Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors

Clinical article

View More View Less
  • 1 Departments of Neurology,
  • | 2 Neurological Surgery, and
  • | 5 Radiology and Biomedical Imaging, and
  • | 4 Graduate Group in Bioengineering, University of California, San Francisco, California; and
  • | 3 Department of Radiology, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object

The aim of this paper was to validate the diffusion tensor imaging (DTI) model for delineation of the corticospinal tract using cortical and subcortical white matter electrical stimulation for the location of functional motor pathways.

Methods

The authors compare probabilistic versus deterministic DTI fiber tracking by reconstructing the pyramidal fiber tracts on preoperatively acquired DTI in patients with brain tumors. They determined the accuracy and precision of these 2 methods using subcortical stimulation points and the sensitivity using cortical stimulation points. The authors further explored the reliability of these methods by estimation of the potential that the found connections were due to a random chance using a novel neighborhood permutation method.

Results

The probabilistic tracking method delineated tracts that were significantly closer to the stimulation points and was more sensitive than deterministic DTI fiber tracking to define the tracts directed to the motor sites. However, both techniques demonstrated poor sensitivity to finding lateral motor regions.

Conclusions

This study highlights the importance of the validation and quantification of preoperative fiber tracking with the aid of electrophysiological data during the surgery. The poor sensitivity of DTI to delineate lateral motor pathways reported herein suggests that DTI fiber tracking must be used with caution and only as adjunctive data to established methods for motor mapping.

Abbreviations used in this paper:

ANNull = architectural neighborhood null; dMRI = diffusion MRI; DTI = diffusion tensor imaging; FA = fractional anisotropy; FSE = fast spin echo; IES = intraoperative electrical stimulation; PDF = probability density function; ROI = region of interest; SNR = signal-to-noise ratio; SPGR = spoiled gradient recalled.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Basser PJ, , Pajevic S, , Pierpaoli C, , Duda J, & Aldroubi A: In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625632, 2000

  • 2

    Behrens TE, , Woolrich MW, , Jenkinson M, , Johansen-Berg H, , Nunes RG, & Clare S, et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:10771088, 2003

    • Search Google Scholar
    • Export Citation
  • 3

    Bello L, , Gambini A, , Castellano A, , Carrabba G, , Acerbi F, & Fava E, et al.: Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39:369382, 2008

    • Search Google Scholar
    • Export Citation
  • 4

    Berger MS, & Ojemann GA, Techniques of functional localization during removal of tumors involving the cerebral hemisphere. Loftus CM, & Traynelis VC: Intraoperative Monitoring Techniques in Neurosurgery New York, McGraw-Hill, 1994. 113127

    • Search Google Scholar
    • Export Citation
  • 5

    Berman JI, , Berger MS, , Chung SW, , Nagarajan SS, & Henry RG: Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107:488494, 2007

    • Search Google Scholar
    • Export Citation
  • 6

    Berman JI, , Berger MS, , Mukherjee P, & Henry RG: Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101:6672, 2004

    • Search Google Scholar
    • Export Citation
  • 7

    Berman JI, , Chung S, , Mukherjee P, , Hess CP, , Han ET, & Henry RG: Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage 39:215222, 2008

    • Search Google Scholar
    • Export Citation
  • 8

    Chung S, , Berman JI, , Rae C, & Henry RG: Effect of DTI bootstrap bias on the DTI uncertainty measurements and probabilistic tractography. Proc Intl Soc Mag Reson Med 15:1596, 2007

    • Search Google Scholar
    • Export Citation
  • 9

    Chung S, , Lu Y, & Henry RG: Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. Neuroimage 33:531541, 2006

    • Search Google Scholar
    • Export Citation
  • 10

    Clark CA, , Barrick TR, , Murphy MM, & Bell BA: White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning?. Neuroimage 20:16011608, 2003

    • Search Google Scholar
    • Export Citation
  • 11

    Coenen VA, , Krings T, , Mayfrank L, , Polin RS, , Reinges MH, & Thron A, et al.: Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 49:8693, 2001

    • Search Google Scholar
    • Export Citation
  • 12

    Efron B, & Tibshirani RJ: An Introduction to the Bootstrap London, Chapman and Hall, 1993

  • 13

    Grunert P, , Darabi K, , Espinosa J, & Filippi R: Computer-aided navigation in neurosurgery. Neurosurg Rev 26:73101, 2003

  • 14

    Haroon HA, , Morris DM, , Embleton KV, , Alexander DC, & Parker GJ: Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis. IEEE Trans Med Imaging 28:535550, 2009

    • Search Google Scholar
    • Export Citation
  • 15

    Heiervang E, , Behrens TE, , Mackay CE, , Robson MD, & Johansen-Berg H: Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 33:867877, 2006

    • Search Google Scholar
    • Export Citation
  • 16

    Henry RG, , Berman JI, , Nagarajan SS, , Mukherjee P, & Berger MS: Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage 21:616622, 2004

    • Search Google Scholar
    • Export Citation
  • 17

    Holodny AI, , Schwartz TH, , Ollenschleger M, , Liu WC, & Schulder M: Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. Case illustration. J Neurosurg 95:1082, 2001

    • Search Google Scholar
    • Export Citation
  • 18

    Jones DK: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807815, 2004

    • Search Google Scholar
    • Export Citation
  • 19

    Kaufman L, , Kramer DM, , Crooks LE, & Ortendahl DA: Measuring signal-to-noise ratios in MR imaging. Radiology 173:265267, 1989

  • 20

    Keles GE, , Lundin DA, , Lamborn KR, , Chang EF, , Ojemann G, & Berger MS: Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369375, 2004

    • Search Google Scholar
    • Export Citation
  • 21

    Kinoshita M, , Yamada K, , Hashimoto N, , Kato A, , Izumoto S, & Baba T, et al.: Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 25:424429, 2005

    • Search Google Scholar
    • Export Citation
  • 22

    Krings T, , Coenen VA, , Axer H, , Reinges MH, , Höller M, & von Keyserlingk DG, et al.: In vivo 3D visualization of normal pyramidal tracts in human subjects using diffusion weighted magnetic resonance imaging and a neuronavigation system. Neurosci Lett 307:192196, 2001

    • Search Google Scholar
    • Export Citation
  • 23

    Kunimatsu A, , Aoki S, , Masutani Y, , Abe O, , Hayashi N, & Mori H, et al.: The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3:1117, 2004

    • Search Google Scholar
    • Export Citation
  • 24

    Leclercq D, , Delmaire C, , de Champfleur NM, , Chiras J, & Lehéricy S: Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am 22:253268, ix, 2011

    • Search Google Scholar
    • Export Citation
  • 25

    Mikuni N, , Okada T, , Nishida N, , Taki J, , Enatsu R, & Ikeda A, et al.: Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg 106:128133, 2007

    • Search Google Scholar
    • Export Citation
  • 26

    Mori S, , Crain BJ, , Chacko VP, & van Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265269, 1999

    • Search Google Scholar
    • Export Citation
  • 27

    Mori S, & van Zijl PC: Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468480, 2002

  • 28

    Nimsky C, , Ganslandt O, , Hastreiter P, , Wang R, , Benner T, & Sorensen AG, et al.: Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56:130138, 2005

    • Search Google Scholar
    • Export Citation
  • 29

    Nimsky C, , Ganslandt O, , Merhof D, , Sorensen AG, & Fahlbusch R: Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30:12191229, 2006

    • Search Google Scholar
    • Export Citation
  • 30

    O'Gorman RL, & Jones DK: Just how much data need to be collected for reliable bootstrap DT-MRI?. Magn Reson Med 56:884890, 2006

  • 31

    Parker GJ, , Haroon HA, & Wheeler-Kingshott CA: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242254, 2003

    • Search Google Scholar
    • Export Citation
  • 32

    Schonberg T, , Pianka P, , Hendler T, , Pasternak O, & Assaf Y: Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:11001111, 2006

    • Search Google Scholar
    • Export Citation
  • 33

    Stadlbauer A, , Nimsky C, , Buslei R, , Salomonowitz E, , Hammen T, & Buchfelder M, et al.: Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34:949956, 2007

    • Search Google Scholar
    • Export Citation
  • 34

    Wieshmann UC, , Symms MR, , Parker GJ, , Clark CA, , Lemieux L, & Barker GJ, et al.: Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry 68:501503, 2000

    • Search Google Scholar
    • Export Citation
  • 35

    Witwer BP, , Moftakhar R, , Hasan KM, , Deshmukh P, , Haughton V, & Field A, et al.: Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97:568575, 2002

    • Search Google Scholar
    • Export Citation
  • 36

    Yingling CD, , Ojemann S, , Dodson B, , Harrington MJ, & Berger MS: Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg 91:922927, 1999

    • Search Google Scholar
    • Export Citation
  • 37

    Zhu T, , Liu X, , Connelly PR, & Zhong J: An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain. Neuroimage 40:11441156, 2008

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 389 183 12
Full Text Views 579 39 7
PDF Downloads 358 35 7
EPUB Downloads 0 0 0