Neuronavigation using susceptibility-weighted venography: application to deep brain stimulation and comparison with gadolinium contrast

Technical note

Silvain Bériault M.Sc.1, Abbas F. Sadikot M.D., Ph.D.1,2, Fahd Alsubaie M.D.1,2, Simon Drouin M.Sc.1,2, D. Louis Collins Ph.D.1, and G. Bruce Pike Ph.D.3
View More View Less
  • 1 McConnell Brain Imaging Centre and
  • | 2 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec; and
  • | 3 Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Careful trajectory planning on preoperative vascular imaging is an essential step in deep brain stimulation (DBS) to minimize risks of hemorrhagic complications and postoperative neurological deficits. This paper compares 2 MRI methods for visualizing cerebral vasculature and planning DBS probe trajectories: a single data set T1-weighted scan with double-dose gadolinium contrast (T1w-Gd) and a multi–data set protocol consisting of a T1-weighted structural, susceptibility-weighted venography, and time-of-flight angiography (T1w-SWI-TOF). Two neurosurgeons who specialize in neuromodulation surgery planned bilateral STN DBS in 18 patients with Parkinson's disease (36 hemispheres) using each protocol separately. Planned trajectories were then evaluated across all vascular data sets (T1w-Gd, SWI, and TOF) to detect possible intersection with blood vessels along the entire path via an objective vesselness measure. The authors' results show that trajectories planned on T1w-SWI-TOF successfully avoided the cerebral vasculature imaged by conventional T1w-Gd and did not suffer from missing vascular information or imprecise data set registration. Furthermore, with appropriate planning and visualization software, trajectory corridors planned on T1w-SWI-TOF intersected significantly less fine vasculature that was not detected on the T1w-Gd (p < 0.01 within 2 mm and p < 0.001 within 4 mm of the track centerline). The proposed T1w-SWI-TOF protocol comes with minimal effects on the imaging and surgical workflow, improves vessel avoidance, and provides a safe cost-effective alternative to injection of gadolinium contrast.

Abbreviations used in this paper:

DBS = deep brain stimulation; IBIS = Interactive Brain Imaging System; MER = microelectrode recording; MIP = maximum intensity projection; mIP = minimum intensity projection; PD = Parkinson's disease; STN = subthalamic nucleus; SWI = susceptibility-weighted imaging; TOF = time of flight; T1w = T1-weighted.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Antiga L: Generalizing vesselness with respect to dimensionality and shape. Insight J, 2007. (http://hdl.handle.net/1926/576) [Accessed March 28, 2014]

    • Search Google Scholar
    • Export Citation
  • 2

    Benabid AL, , Chabardes S, , Mitrofanis J, & Pollak P: Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 8:6781, 2009

    • Search Google Scholar
    • Export Citation
  • 3

    Benabid AL, , Pollak P, , Louveau A, , Henry S, & de Rougemont J: Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50:344346, 1987

    • Search Google Scholar
    • Export Citation
  • 4

    Bériault S, , Al Subaie F, , Mok K, , Sadikot AF, & Pike GB, Automatic trajectory planning of DBS neurosurgery from multimodal MRI datasets. Fichtinger G, , Martel AL, & Peters TM: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011. 14th International Conference, Toronto, Canada, September 18–22, 2011, Proceedings, Part I Heidelberg, Springer, 2011. 259266

    • Search Google Scholar
    • Export Citation
  • 5

    Bériault S, , Drouin S, , Sadikot AF, , Xiao Y, , Collins DL, & Pike GB, A prospective evaluation of computer-assisted deep brain stimulation trajectory planning. Drechsler K, , Erdt M, & Linguraru MG, et al.: Clinical Image-Based Procedures: From Planning to Intervention. International Workshop, CLIP 2012 Heidelberg, Springer, 2013. 4249

    • Search Google Scholar
    • Export Citation
  • 6

    Bériault S, , Subaie FA, , Collins DL, , Sadikot AF, & Pike GB: A multi-modal approach to computer-assisted deep brain stimulation trajectory planning. Int J CARS 7:687704, 2012

    • Search Google Scholar
    • Export Citation
  • 7

    Bériault S, , Xiao Y, , Bailey L, , Collins DL, , Sadikot AF, & Pike GB, Towards computer-assisted deep brain stimulation targeting with multiple active contacts. Ayache N, , Delingette H, & Golland P, et al.: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, Part I Heidelberg, Springer, 2012. 487494

    • Search Google Scholar
    • Export Citation
  • 8

    Binder DK, , Rau G, & Starr PA: Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact Funct Neurosurg 80:2831, 2003

    • Search Google Scholar
    • Export Citation
  • 9

    Bouix S, , Siddiqi K, & Tannenbaum A: Flux driven automatic centerline extraction. Med Image Anal 9:209221, 2005

  • 10

    Brunenberg EJ, , Platel B, , Hofman PA, , Ter Haar Romeny BM, & Visser-Vandewalle V: Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. A review. J Neurosurg 115:971984, 2011

    • Search Google Scholar
    • Export Citation
  • 11

    Chakravarty MM, , Bertrand G, , Hodge CP, , Sadikot AF, & Collins DL: The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30:359376, 2006

    • Search Google Scholar
    • Export Citation
  • 12

    Coupe P, , Yger P, , Prima S, , Hellier P, , Kervrann C, & Barillot C: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27:425441, 2008

    • Search Google Scholar
    • Export Citation
  • 13

    D'Haese PF, , Cetinkaya E, , Konrad PE, , Kao C, & Dawant BM: Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24:14691478, 2005

    • Search Google Scholar
    • Export Citation
  • 14

    Deistung A, , Dittrich E, , Sedlacik J, , Rauscher A, & Reichenbach JR: ToF-SWI: simultaneous time of flight and fully flow compensated susceptibility weighted imaging. J Magn Reson Imaging 29:14781484, 2009

    • Search Google Scholar
    • Export Citation
  • 15

    Denk C, & Rauscher A: Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 31:185191, 2010

  • 16

    Du YP, & Jin Z: Simultaneous acquisition of MR angiography and venography (MRAV). Magn Reson Med 59:954958, 2008

  • 17

    Elolf E, , Bockermann V, , Gringel T, , Knauth M, , Dechent P, & Helms G: Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. AJNR Am J Neuroradiol 28:10931094, 2007

    • Search Google Scholar
    • Export Citation
  • 18

    Essert C, , Haegelen C, , Lalys F, , Abadie A, & Jannin P: Automatic computation of electrode trajectories for Deep Brain Stimulation: a hybrid symbolic and numerical approach. Int J Comput Assist Radiol Surg 7:517532, 2012

    • Search Google Scholar
    • Export Citation
  • 19

    Foltynie T, , Zrinzo L, , Martinez-Torres I, , Tripoliti E, , Petersen E, & Holl E, et al.: MRI-guided STN DBS in Parkinson's disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82:358363, 2011

    • Search Google Scholar
    • Export Citation
  • 20

    Frangi AF, , Niessen WJ, , Vincken KL, & Viergever MA, Multiscale vessel enhancement filtering. Wells WM, , Colchester ACF, & Delp SL: Medical Image Computing and Computer-Assisted Intervention–MICCAI 1998 Heidelberg, Springer, 1998. 130137

    • Search Google Scholar
    • Export Citation
  • 21

    Guo T, , Parrent AG, & Peters TM: Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation. Comput Aided Surg 12:325334, 2007

    • Search Google Scholar
    • Export Citation
  • 22

    Haacke EM, , Mittal S, , Wu Z, , Neelavalli J, & Cheng YC: Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:1930, 2009

    • Search Google Scholar
    • Export Citation
  • 23

    Haacke EM, , Xu Y, , Cheng YC, & Reichenbach JR: Susceptibility weighted imaging (SWI). Magn Reson Med 52:612618, 2004

  • 24

    Machado A, , Rezai AR, , Kopell BH, , Gross RE, , Sharan AD, & Benabid AL: Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management. Mov Disord 21:Suppl 14 S247S258, 2006

    • Search Google Scholar
    • Export Citation
  • 25

    Mercier L, , Del Maestro RF, , Petrecca K, , Kochanowska A, , Drouin S, & Yan CX, et al.: New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6:507522, 2011

    • Search Google Scholar
    • Export Citation
  • 26

    Mittal S, , Wu Z, , Neelavalli J, & Haacke EM: Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30:232252, 2009

    • Search Google Scholar
    • Export Citation
  • 27

    Montgomery EB Jr: Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov Disord 27:13871391, 2012

    • Search Google Scholar
    • Export Citation
  • 28

    O'Gorman RL, , Shmueli K, , Ashkan K, , Samuel M, , Lythgoe DJ, & Shahidiani A, et al.: Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 21:130136, 2011

    • Search Google Scholar
    • Export Citation
  • 29

    Rezai AR, , Kopell BH, , Gross RE, , Vitek JL, , Sharan AD, & Limousin P, et al.: Deep brain stimulation for Parkinson's disease: surgical issues. Mov Disord 21:Suppl 14 S197S218, 2006

    • Search Google Scholar
    • Export Citation
  • 30

    Sadowski EA, , Bennett LK, , Chan MR, , Wentland AL, , Garrett AL, & Garrett RW, et al.: Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148157, 2007

    • Search Google Scholar
    • Export Citation
  • 31

    Sam AD II, , Morasch MD, , Collins J, , Song G, , Chen R, & Pereles FS: Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313318, 2003

    • Search Google Scholar
    • Export Citation
  • 32

    Shamir RR, , Joskowicz L, , Tamir I, , Dabool E, , Pertman L, & Ben-Ami A, et al.: Reduced risk trajectory planning in image-guided keyhole neurosurgery. Med Phys 39:28852895, 2012

    • Search Google Scholar
    • Export Citation
  • 33

    Thomsen HS: Recent hot topics in contrast media. Eur Radiol 21:492495, 2011

  • 34

    Vertinsky AT, , Coenen VA, , Lang DJ, , Kolind S, , Honey CR, & Li D, et al.: Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol 30:17171724, 2009

    • Search Google Scholar
    • Export Citation
  • 35

    Wiest-Daesslé N, , Prima S, , Coupé P, , Morrissey S, & Barillot C, Rician Noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. Metaxas D, , Axel L, & Fichtinger G, et al.: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, Part II Heidelberg, Springer, 2008. 171179

    • Search Google Scholar
    • Export Citation
  • 36

    Xiao Y, , Beriault S, , Pike GB, & Collins DL: Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus. Magn Reson Imaging 30:627640, 2012

    • Search Google Scholar
    • Export Citation
  • 37

    Zrinzo L, , Foltynie T, , Limousin P, & Hariz MI: Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. Clinical article. J Neurosurg 116:8494, 2012

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 315 176 10
Full Text Views 308 9 1
PDF Downloads 254 4 1
EPUB Downloads 0 0 0