Nerve transfers for the restoration of hand function after spinal cord injury

Case report

View More View Less
  • 1 Division of Plastic and Reconstructive Surgery, and
  • | 2 Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Spinal cord injury (SCI) remains a significant public health problem. Despite advances in understanding of the pathophysiological processes of acute and chronic SCI, corresponding advances in translational applications have lagged behind. Nerve transfers using an expendable nearby motor nerve to reinnervate a denervated nerve have resulted in more rapid and improved functional recovery than traditional nerve graft reconstructions following a peripheral nerve injury. The authors present a single case of restoration of some hand function following a complete cervical SCI utilizing nerve transfers.

Abbreviations used in this paper:

AIN = anterior interosseous nerve; ASIA = American Spinal Injury Association; ICSHT = International Classification for Surgery of the Hand in Tetraplegia; MRC = Medical Research Council; SCI = spinal cord injury.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Ackery A, , Tator C, & Krassioukov A: A global perspective on spinal cord injury epidemiology. J Neurotrauma 21:13551370, 2004

  • 2

    Bagriyanik HA, , Ozogul C, , Alaygut E, , Gokmen N, , Kucukguclu S, & Gunerli A, et al.: Neuroprotective effects of ketorolac tromethamine after spinal cord injury in rats: an ultrastructural study. Adv Ther 25:152158, 2008

    • Search Google Scholar
    • Export Citation
  • 3

    Bao F, & Liu D: Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 115:839849, 2002

    • Search Google Scholar
    • Export Citation
  • 4

    Bertelli JA, , Ghizoni MF, & Tacca CP: Transfer of the teres minor motor branch for triceps reinnervation in tetraplegia. Case report. J Neurosurg 114:14571460, 2011

    • Search Google Scholar
    • Export Citation
  • 5

    Bertelli JA, , Tacca CP, , Ghizoni MF, , Kechele PR, & Santos MA: Transfer of supinator motor branches to the posterior interosseous nerve to reconstruct thumb and finger extension in tetraplegia: case report. J Hand Surg Am 35:16471651, 2010

    • Search Google Scholar
    • Export Citation
  • 6

    Brandt KE, & Mackinnon SE: A technique for maximizing biceps recovery in brachial plexus reconstruction. J Hand Surg Am 18:726733, 1993

    • Search Google Scholar
    • Export Citation
  • 7

    Brown JM, & Mackinnon SE: Nerve transfers in the forearm and hand. Hand Clin 24:319340, v, 2008

  • 8

    Brown JM, , Shah MN, & Mackinnon SE: Distal nerve transfers: a biology-based rationale. Neurosurg Focus 26:2 E12, 2009

  • 9

    Brunelli G: Research on the possibility of overcoming traumatic paraplegia and its first clinical results. Curr Pharm Des 11:14211428, 2005

    • Search Google Scholar
    • Export Citation
  • 10

    Brunelli G, & von Wild K: Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Korean Neurosurg Soc 46:14, 2009

    • Search Google Scholar
    • Export Citation
  • 11

    Carlsen BT, , Kircher MF, , Spinner RJ, , Bishop AT, & Shin AY: Comparison of single versus double nerve transfers for elbow flexion after brachial plexus injury. Plast Reconstr Surg 127:269276, 2011

    • Search Google Scholar
    • Export Citation
  • 12

    Carlson SL, , Parrish ME, , Springer JE, , Doty K, & Dossett L: Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:7788, 1998

    • Search Google Scholar
    • Export Citation
  • 13

    Carlstedt T, , Anand P, , Hallin R, , Misra PV, , Norén G, & Seferlis T: Spinal nerve root repair and reimplantation of avulsed ventral roots into the spinal cord after brachial plexus injury. J Neurosurg 93:2 Suppl 237247, 2000

    • Search Google Scholar
    • Export Citation
  • 14

    Dai KR, , Yu CT, , Wu RS, , Zhang XF, , Yuan JX, & Sun YH: Intercostal-lumbar-spinal nerve anastomoses for cord transection. A preliminary investigation. J Reconstr Microsurg 1:223226, 1985

    • Search Google Scholar
    • Export Citation
  • 15

    Déry MA, , Rousseau G, , Benderdour M, & Beaumont E: Atorvastatin prevents early apoptosis after thoracic spinal cord contusion injury and promotes locomotion recovery. Neurosci Lett 453:7376, 2009

    • Search Google Scholar
    • Export Citation
  • 16

    Eng LF, & Lee YL: Response of chemokine antagonists to inflammation in injured spinal cord. Neurochem Res 28:95100, 2003

  • 17

    Fleming JC, , Bao F, , Chen Y, , Hamilton EF, , Gonzalez-Lara LE, & Foster PJ, et al.: Timing and duration of anti–α4β1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. Laboratory investigation. J Neurosurg Spine 11:575587, 2009

    • Search Google Scholar
    • Export Citation
  • 18

    Fournier HD, , Mercier P, & Menei P: Repair of avulsed ventral nerve roots by direct ventral intraspinal implantation after brachial plexus injury. Hand Clin 21:109118, 2005

    • Search Google Scholar
    • Export Citation
  • 19

    Guízar-Sahagún G, , Rodríguez-Balderas CA, , Franco-Bourland RE, , Martínez-Cruz A, , Grijalva I, & Ibarra A, et al.: Lack of neuroprotection with pharmacological pretreatment in a paradigm for anticipated spinal cord lesions. Spinal Cord 47:156160, 2009

    • Search Google Scholar
    • Export Citation
  • 20

    Kale SS, , Glaus SW, , Yee A, , Nicoson MC, , Hunter DA, & Mackinnon SE, et al.: Reverse end-to-side nerve transfer: from animal model to clinical use. J Hand Surg Am 36:16311639, 2011

    • Search Google Scholar
    • Export Citation
  • 21

    Kang CE, , Poon PC, , Tator CH, & Shoichet MS: A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng Part A 15:595604, 2009

    • Search Google Scholar
    • Export Citation
  • 22

    Konya D, , Liao WL, , Choi H, , Yu D, , Woodard MC, & Newton KM, et al.: Functional recovery in T13–L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity. Regen Med 3:309327, 2008

    • Search Google Scholar
    • Export Citation
  • 23

    Kumar PA, & Hassan KM: Cross-face nerve graft with freemuscle transfer for reanimation of the paralyzed face: a comparative study of the single-stage and two-stage procedures. Plast Reconstr Surg 109:451464, 2002

    • Search Google Scholar
    • Export Citation
  • 24

    Lin H, , Hou C, & Chen A: Reconstructed bladder innervation above the level of spinal cord injury to produce urination by abdomen-to-bladder reflex contractions. Case report. J Neurosurg Spine 14:799802, 2011

    • Search Google Scholar
    • Export Citation
  • 25

    Lin H, , Hou C, & Zhen X: Bypassing spinal cord injury: surgical reconstruction of afferent and efferent pathways to the urinary bladder after conus medullaris injury in a rat model. J Reconstr Microsurg 24:575581, 2008

    • Search Google Scholar
    • Export Citation
  • 26

    Liu S, , Peulve P, , Jin O, , Boisset N, , Tiollier J, & Said G, et al.: Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots. J Neurosci Res 49:425432, 1997

    • Search Google Scholar
    • Export Citation
  • 27

    Livshits A, , Catz A, , Folman Y, , Witz M, , Livshits V, & Baskov A, et al.: Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord 42:211217, 2004

    • Search Google Scholar
    • Export Citation
  • 28

    López-Vales R, , García-Alías G, , Forés J, , Udina E, , Gold BG, & Navarro X, et al.: FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat. J Neurosci Res 81:827836, 2005

    • Search Google Scholar
    • Export Citation
  • 29

    López-Vales R, , Redensek A, , Skinner TA, , Rathore KI, , Ghasemlou N, & Wojewodka G, et al.: Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J Neurosci 30:32203226, 2010

    • Search Google Scholar
    • Export Citation
  • 30

    Louie G, , Mackinnon SE, , Dellon AL, , Patterson GA, & Hunter DA: Medial antebrachial cutaneous—lateral femoral cutaneous neurotization in restoration of sensation to pressure-bearing areas in a paraplegic: a four-year follow-up. Ann Plast Surg 19:572576, 1987

    • Search Google Scholar
    • Export Citation
  • 31

    Mackinnon SE, , Dellon AL, , Patterson GA, & Gruss JS: Medial antebrachial cutaneous-lateral femoral cutaneous neurotization to provide sensation to pressure-bearing areas in the paraplegic patient. Ann Plast Surg 14:541544, 1985

    • Search Google Scholar
    • Export Citation
  • 32

    Mackinnon SE, & Novak CB: Nerve transfers. New options for reconstruction following nerve injury. Hand Clin 15:643666, ix, 1999

  • 33

    Malik HG, & Buhr AJ: Intercostal nerve transfer to lumbar nerve roots. Part I: development of an animal model and cadaver studies. Spine (Phila Pa 1976) 4:410415, 1979

    • Search Google Scholar
    • Export Citation
  • 34

    Mann C, , Lee JH, , Liu J, , Stammers AM, , Sohn HM, & Tetzlaff W, et al.: Delayed treatment of spinal cord injury with erythropoietin or darbepoetin—a lack of neuroprotective efficacy in a contusion model of cord injury. Exp Neurol 211:3440, 2008

    • Search Google Scholar
    • Export Citation
  • 35

    Matis GK, & Birbilis TA: Erythropoietin in spinal cord injury. Eur Spine J 18:314323, 2009

  • 36

    McDowell CL, , Moberg EA, & House JH: The Second International Conference on Surgical Rehabilitation of the Upper Limb in Tetraplegia (Quadriplegia). J Hand Surg Am 11:604608, 1986

    • Search Google Scholar
    • Export Citation
  • 37

    McTigue DM, , Tripathi R, , Wei P, & Lash AT: The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205:396406, 2007

    • Search Google Scholar
    • Export Citation
  • 38

    Mu X, , Azbill RD, & Springer JE: Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 17:773780, 2000

    • Search Google Scholar
    • Export Citation
  • 39

    National Spinal Cord Injury Statistical Center: Spinal Cord Injury Facts and Figures at a Glance Birmingham, AL, NSCISC, 2010. (https://www.nscisc.uab.edu/PublicDocuments/nscisc_home/pdf/Facts%20and%20Figures%20at%20a%20Glance%202010.pdf) [Accessed March 30, 2012]

    • Search Google Scholar
    • Export Citation
  • 40

    Nobunaga AI, , Go BK, & Karunas RB: Recent demographic and injury trends in people served by the Model Spinal Cord Injury Care Systems. Arch Phys Med Rehabil 80:13721382, 1999

    • Search Google Scholar
    • Export Citation
  • 41

    Nógrádi A, , Szabó A, , Pintér S, & Vrbová G: Delayed riluzole treatment is able to rescue injured rat spinal motoneurons. Neuroscience 144:431438, 2007

    • Search Google Scholar
    • Export Citation
  • 42

    Oberlin C, , Ameur NE, , Teboul F, , Beaulieu JY, & Vacher C: Restoration of elbow flexion in brachial plexus injury by transfer of ulnar nerve fascicles to the nerve to the biceps muscle. Tech Hand Up Extrem Surg 6:8690, 2002

    • Search Google Scholar
    • Export Citation
  • 43

    Ohta S, , Iwashita Y, , Takada H, , Kuno S, & Nakamura T: Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine (Phila Pa 1976) 30:11541158, 2005

    • Search Google Scholar
    • Export Citation
  • 44

    Oppenheim JS, , Spitzer DE, & Winfree CJ: Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article. Neurosurg Focus 26:2 E6, 2009

    • Search Google Scholar
    • Export Citation
  • 45

    Pannu R, , Barbosa E, , Singh AK, & Singh I: Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340350, 2005

    • Search Google Scholar
    • Export Citation
  • 46

    Pannu R, , Christie DK, , Barbosa E, , Singh I, & Singh AK: Posttrauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 101:182200, 2007

    • Search Google Scholar
    • Export Citation
  • 47

    Park SW, , Yi JH, , Miranpuri G, , Satriotomo I, , Bowen K, & Resnick DK, et al.: Thiazolidinedione class of peroxisome proliferatoractivated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320:10021012, 2007

    • Search Google Scholar
    • Export Citation
  • 48

    Pinzon A, , Marcillo A, , Pabon D, , Bramlett HM, , Bunge MB, & Dietrich WD: A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Exp Neurol 213:129136, 2008

    • Search Google Scholar
    • Export Citation
  • 49

    Ray WZ, & Mackinnon SE: Clinical outcomes following median to radial nerve transfers. J Hand Surg Am 36:201208, 2011

  • 50

    Ray WZ, , Yarbrough CK, , Yee A, & Mackinnon SE: Clinical outcomes following brachialis to anterior interosseous nerve transfers. J Neurosurg [in press] 2012

    • Search Google Scholar
    • Export Citation
  • 51

    Saganová K, , Orendácová J, , Cízková D, & Vanický I: Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett 433:246249, 2008

    • Search Google Scholar
    • Export Citation
  • 52

    Sangalang VE, , Buhr AJ, & Malik HG: Intercostal nerve transfer to lumbar nerve roots. Part II: Neuropathologic findings in the animal model. Spine (Phila Pa 1976) 4:416422, 1979

    • Search Google Scholar
    • Export Citation
  • 53

    Schwartz G, & Fehlings MG: Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:2 Suppl 245256, 2001

    • Search Google Scholar
    • Export Citation
  • 54

    Sönmez A, , Kabakçi B, , Vardar E, , Gürel D, , Sönmez U, & Orhan YT, et al.: Erythropoietin attenuates neuronal injury and potentiates the expression of pCREB in anterior horn after transient spinal cord ischemia in rats. Surg Neurol 68:297303, 2007

    • Search Google Scholar
    • Export Citation
  • 55

    Sribnick EA, , Samantaray S, , Das A, , Smith J, , Matzelle DD, & Ray SK, et al.: Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88:17381750, 2010

    • Search Google Scholar
    • Export Citation
  • 56

    Stirling DP, , Khodarahmi K, , Liu J, , McPhail LT, , McBride CB, & Steeves JD, et al.: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:21822190, 2004

    • Search Google Scholar
    • Export Citation
  • 57

    Tadie M, , Liu S, , Robert R, , Guiheneuc P, , Pereon Y, & Perrouin-Verbe B, et al.: Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 19:909916, 2002

    • Search Google Scholar
    • Export Citation
  • 58

    Tian DS, , Liu JL, , Xie MJ, , Zhan Y, , Qu WS, & Yu ZY, et al.: Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 109:16581667, 2009

    • Search Google Scholar
    • Export Citation
  • 59

    Tung TH, & Mackinnon SE: Nerve transfers: indications, techniques, and outcomes. J Hand Surg Am 35:332341, 2010

  • 60

    Tung TH, , Novak CB, & Mackinnon SE: Nerve transfers to the biceps and brachialis branches to improve elbow flexion strength after brachial plexus injuries. J Neurosurg 98:313318, 2003

    • Search Google Scholar
    • Export Citation
  • 61

    Vialle R, , Lacroix C, , Harding I, , Loureiro MC, & Tadié M: Motor and sensitive axonal regrowth after multiple intercosto-lumbar neurotizations in a sheep model. Spinal Cord 48:367374, 2010

    • Search Google Scholar
    • Export Citation
  • 62

    Vialle R, , Lozeron P, , Loureiro MC, & Tadié M: Multiple lumbar roots neurotizations with the lower intercostal nerves. Preliminary clinical and electrophysiological results in a sheep model. J Surg Res 149:199205, 2008

    • Search Google Scholar
    • Export Citation
  • 63

    Wang XS, , Chen YY, , Shang XF, , Zhu ZG, , Chen GQ, & Han Z, et al.: Idazoxan attenuates spinal cord injury by enhanced astrocytic activation and reduced microglial activation in rat experimental autoimmune encephalomyelitis. Brain Res 1253:198209, 2009

    • Search Google Scholar
    • Export Citation
  • 64

    Zeman RJ, , Bauman WA, , Wen X, , Ouyang N, , Etlinger JD, & Cardozo CP: Improved functional recovery with oxandrolone after spinal cord injury in rats. Neuroreport 20:864868, 2009

    • Search Google Scholar
    • Export Citation
  • 65

    Zhang S, , Johnston L, , Zhang Z, , Ma Y, , Hu Y, & Wang J, et al.: Restoration of stepping-forward and ambulatory function in patients with paraplegia: rerouting of vascularized intercostal nerves to lumbar nerve roots using selected interfascicular anastomosis. Surg Technol Int 11:244248, 2003

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2270 570 86
Full Text Views 1243 57 6
PDF Downloads 268 44 4
EPUB Downloads 0 0 0