Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite

Clinical article

Ralph J. Mobbs NeuroSpineClinic, Prince of Wales Private Hospital; and
Faculty of Medicine, University of New South Wales, Sydney, Australia

Search for other papers by Ralph J. Mobbs in
jns
Google Scholar
PubMed
Close
 B.Sc., M.B.B.S., M.S., F.R.A.C.S.
,
Monish Maharaj Faculty of Medicine, University of New South Wales, Sydney, Australia

Search for other papers by Monish Maharaj in
jns
Google Scholar
PubMed
Close
 M.D.
, and
Prashanth J. Rao NeuroSpineClinic, Prince of Wales Private Hospital; and
Faculty of Medicine, University of New South Wales, Sydney, Australia

Search for other papers by Prashanth J. Rao in
jns
Google Scholar
PubMed
Close
 M.D.
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

Object

Despite limited availability and the morbidity associated with autologous iliac crest bone graft (ICBG), its use in anterior lumbar interbody fusion (ALIF) procedures remains the gold standard to achieve arthrodesis. The search for alternative grafts yielding comparable or superior fusion outcomes with fewer complications continues. In particular, i-FACTOR, a novel bone graft substitute composed of anorganic bone matrix (ABM) with P-15 small peptide, is one example currently used widely in the dental community. Although preclinical studies have documented its usefulness, the role of i-FACTOR in ALIF procedures remains unknown.

The authors' goal was to determine the safety and efficacy of i-FACTOR bone graft composite used in patients who underwent ALIF by evaluating fusion rates and clinical outcomes.

Methods

A nonblinded cohort of patients who were all referred to a single surgeon's practice was prospectively studied. One hundred ten patients with degenerative spinal disease underwent single or multilevel ALIF using the ABM/P-15 bone graft composite with a mean of 24 months (minimum 15 months) of follow-up were enrolled in the study. Patient's clinical outcomes were assessed using the Oswestry Disability Index for low-back pain, the 12-Item Short Form Health Survey, Odom's criteria, and a visual analog scale for pain. Fine-cut CT scans were used to evaluate the progression to fusion.

Results

All patients who received i-FACTOR demonstrated radiographic evidence of bony induction and early incorporation of bone graft. At a mean of 24 months of follow-up (range 15–43 months), 97.5%, 81%, and 100% of patients, respectively, who had undergone single-, double-, and triple-level surgery exhibited fusion at all treated levels. The clinical outcomes demonstrated a statistically significant (p < 0.05) difference between preoperative and postoperative Oswestry Disability Index, 12-Item Short Form Health Survey, and visual analog scores.

Conclusions

The use of i-FACTOR bone graft substitute demonstrates promising results for facilitating successful fusion and improving clinical outcomes in patients who undergo ALIF surgery for degenerative spinal pathologies.

Abbreviations used in this paper:

ABM = anorganic bone matrix; ALIF = anterior lumbar interbody fusion; BMP = bone morphogenetic protein; DDD = degenerative disc disease; ICBG = iliac crest bone graft; ODI = Oswestry Disability Index; rhBMP = recombinant human BMP; SF-12 = 12-Item Short Form Health Survey; VAS = visual analog scale.
  • Collapse
  • Expand
  • 1

    Anderson DG, , Sayadipour A, , Shelby K, , Albert TJ, , Vaccaro AR, & Weinstein MS: Anterior interbody arthrodesis with percutaneous posterior pedicle fixation for degenerative conditions of the lumbar spine. Eur Spine J 20:13231330, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Banwart JC, , Asher MA, & Hassanein RS: Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976) 20:10551060, 1995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Bednar DA, & Al-Tunaib W: Failure of reconstitution of opensection, posterior iliac-wing bone graft donor sites after lumbar spinal fusion. Observations with implications for the etiology of donor site pain. Eur Spine J 14:9598, 2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Benglis D, , Wang MY, & Levi AD: A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery 62:5 Suppl 2 ONS423ONS431, 2008

    • Search Google Scholar
    • Export Citation
  • 5

    Bhatnagar RS, , Qian JJ, & Gough CA: The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: structural and biological evidence for conformational tautomerism on fiber surface. J Biomol Struct Dyn 14:547560, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Blumenthal SL, , Baker J, , Dossett A, & Selby DK: The role of anterior lumbar fusion for internal disc disruption. Spine (Phila Pa 1976) 13:566569, 1988

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Boden SD, , Zdeblick TA, , Sandhu HS, & Heim SE: The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine (Phila Pa 1976) 25:376381, 2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Burkus JK, , Dorchak JD, & Sanders DL: Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine (Phila Pa 1976) 28:372377, 2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Burkus JK, , Gornet MF, , Dickman CA, & Zdeblick TA: Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337349, 2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Burkus JK, , Gornet MF, , Schuler TC, , Kleeman TJ, & Zdeblick TA: Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91:11811189, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Burkus JK, , Transfeldt EE, , Kitchel SH, , Watkins RG, & Balderston RA: Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 27:23962408, 2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Burns BH: An operation for spondylolisthesis. Lancet 221:12331239, 1933

  • 13

    Capener N: Spondylolisthesis. Br J Surg 19:374386, 1932

  • 14

    Chau AM, , Xu LL, , Wong JH, & Mobbs RJ: Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine. Neurosurg Rev 37:2337, 2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Chen Z, , Ba G, , Shen T, & Fu Q: Recombinant human bone morphogenetic protein-2 versus autogenous iliac crest bone graft for lumbar fusion: a meta-analysis of ten randomized controlled trials. Arch Orthop Trauma Surg 132:17251740, 2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Cheung KM, , Zhang YG, , Lu DS, , Luk KD, & Leong JC: Reduction of disc space distraction after anterior lumbar interbody fusion with autologous iliac crest graft. Spine (Phila Pa 1976) 28:13851389, 2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Ehrler DM, & Vaccaro AR: The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 371 3845, 2000

  • 18

    Fairbank JC, & Pynsent PB: The Oswestry Disability Index. Spine (Phila Pa 1976) 25:29402952, 2000

  • 19

    Fowler BL, , Dall BE, & Rowe DE: Complications associated with harvesting autogenous iliac bone graft. Am J Orthop 24:895903, 1995

  • 20

    Greenough CG, , Taylor LJ, & Fraser RD: Anterior lumbar fusion: results, assessment techniques and prognostic factors. Eur Spine J 3:225230, 1994

  • 21

    Gomar F, , Orozco R, , Villar JL, & Arrizabalaga F: P-15 small peptide bone graft substitute in the treatment of non-unions and delayed union. A pilot clinical trial. Int Orthop 31:9399, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Heary RF, , Schlenk RP, , Sacchieri TA, , Barone D, & Brotea C: Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery 50:510517, 2002

    • Search Google Scholar
    • Export Citation
  • 23

    Ishihara H, , Osada R, , Kanamori M, , Kawaguchi Y, , Ohmori K, & Kimura T, et al.: Minimum 10-year follow-up study of anterior lumbar interbody fusion for isthmic spondylolisthesis. J Spinal Disord 14:9199, 2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Kanatani M, , Sugimoto T, , Kaji H, , Kobayashi T, , Nishiyama K, & Fukase M, et al.: Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 10:16811690, 1995

    • Search Google Scholar
    • Export Citation
  • 25

    Kim JS, , Choi WG, & Lee SH: Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis: minimum 5-year follow-up. Spine J 10:404409, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Kim JS, , Kim DH, , Lee SH, , Park CK, , Hwang JH, & Cheh G, et al.: Comparison study of the instrumented circumferential fusion with instrumented anterior lumbar interbody fusion as a surgical procedure for adult low-grade isthmic spondylolisthesis. World Neurosurg 73:565571, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Kleeman TJ, , Ahn UM, & Talbot-Kleeman A: Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine (Phila Pa 1976) 26:27512756, 2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Kübler A, , Neugebauer J, , Oh JH, , Scheer M, & Zöller JE: Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent 13:171179, 2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Kurz LT, , Garfin SR, & Booth RE Jr: Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976) 14:13241331, 1989

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Lee DY, , Lee SH, & Maeng DH: Two-level anterior lumbar interbody fusion with percutaneous pedicle screw fixation: a minimum 3-year follow-up study. Neurol Med Chir (Tokyo) 50:645650, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Linovitz RJ, & Peppers TA: Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Orthopedics 25:5 Suppl s585s589, 2002

    • Search Google Scholar
    • Export Citation
  • 32

    Mannion RJ, , Nowitzke AM, & Wood MJ: Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2—but what is the cost?. Spine J 11:527533, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    McAdoo S: Prospective, randomized, controlled trial demonstrates 98% fusion rate at 6-months and 12-months with i-FACTOR™ biologic bone graft and superiority versus autograft in single- and multi-level PLIF spine surgery. Cerapedics http://www.cerapedics.com/intl/news/story6/) [Accessed September 3, 2014]

    • Search Google Scholar
    • Export Citation
  • 34

    Mercer W: Spondylolisthesis: with a description of a new method of operative treatment and notes of ten cases. Edinburgh Med J 43:545572, 1936

    • Search Google Scholar
    • Export Citation
  • 35

    Mobbs RJ, , Chung M, & Rao PJ: Bone graft substitutes for anterior lumbar interbody fusion. Orthop Surg 5:7785, 2013

  • 36

    Mobbs RJ, , Loganathan A, , Yeung V, & Rao PJ: Indications for anterior lumbar interbody fusion. Orthop Surg 5:153163, 2013

  • 37

    Motosuneya T, , Asazuma T, , Nobuta M, , Masuoka K, , Ichimura S, & Fujikawa K: Anterior lumbar interbody fusion: changes in area of the dural tube, disc height, and prevalence of cauda equina adhesion in magnetic resonance images. J Spinal Disord Tech 18:1822, 2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Newman MH, & Grinstead GL: Anterior lumbar interbody fusion for internal disc disruption. Spine (Phila Pa 1976) 17:831833, 1992

  • 39

    Ohtori S, , Koshi T, , Yamashita M, , Takaso M, , Yamauchi K, & Inoue G, et al.: Single-level instrumented posterolateral fusion versus non-instrumented anterior interbody fusion for lumbar spondylolisthesis: a prospective study with a 2-year follow-up. J Orthop Sci 16:352358, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Pavlov PW, , Meijers H, , van Limbeek J, , Jacobs WC, , Lemmens JA, & Obradov-Rajic M, et al.: Good outcome and restoration of lordosis after anterior lumbar interbody fusion with additional posterior fixation. Spine (Phila Pa 1976) 29:18931900, 2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Saraph V, , Lerch C, , Walochnik N, , Bach CM, , Krismer M, & Wimmer C: Comparison of conventional versus minimally invasive extraperitoneal approach for anterior lumbar interbody fusion. Eur Spine J 13:425431, 2004

    • Search Google Scholar
    • Export Citation
  • 42

    Sherman BP, , Lindley EM, , Turner AS, , Seim HB III, , Benedict J, & Burger EL, et al.: Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. Eur Spine J 19:21562163, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Shim CS, , Lee SH, , Jung B, , Sivasabaapathi P, , Park SH, & Shin SW: Fluoroscopically assisted percutaneous translaminar facet screw fixation following anterior lumbar interbody fusion: technical report. Spine (Phila Pa 1976) 30:838843, 2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Slosar PJ, , Josey R, & Reynolds J: Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7:301307, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Summers BN, & Eisenstein SM: Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 71:677680, 1989

    • Search Google Scholar
    • Export Citation
  • 46

    Thalgott JS, , Fogarty ME, , Giuffre JM, , Christenson SD, , Epstein AK, & Aprill C: A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine (Phila Pa 1976) 34:12511256, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Thalgott JS, , Klezl Z, , Timlin M, & Giuffre JM: Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine (Phila Pa 1976) 27:E518E527, 2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Tiusanen H, , Seitsalo S, , Osterman K, & Soini J: Anterior interbody lumbar fusion in severe low back pain. Clin Orthop Relat Res 324 153163, 1996

    • Search Google Scholar
    • Export Citation
  • 49

    US Food and Drug Administration: Summary of Safety and Effectiveness Data. InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Device (http://www.accessdata.fda.gov/cdrh_docs/pdf/P000058b.pdf) [Accessed September 3, 2014]

    • Search Google Scholar
    • Export Citation
  • 50

    Vaccaro AR, , Chiba K, , Heller JG, , Patel TC, , Thalgott JS, & Truumees E, et al.: Bone grafting alternatives in spinal surgery. Spine J 2:206215, 2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Vaidya R, , Weir R, , Sethi A, , Meisterling S, , Hakeos W, & Wybo CD: Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89:342345, 2007

    • Search Google Scholar
    • Export Citation
  • 52

    Ware J Jr, , Kosinski M, & Keller SD: A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 34:220233, 1996

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Williams BJ, , Smith JS, , Fu KM, , Hamilton DK, , Polly DW Jr, & Ames CP, et al.: Does bone morphogenetic protein increase the incidence of perioperative complications in spinal fusion? A comparison of 55,862 cases of spinal fusion with and without bone morphogenetic protein. Spine (Phila Pa 1976) 36:16851691, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2044 638 67
Full Text Views 685 41 4
PDF Downloads 656 58 4
EPUB Downloads 0 0 0