Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats

Laboratory investigation

Yerko A. Berrocal The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and

Search for other papers by Yerko A. Berrocal in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Vania W. Almeida The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and

Search for other papers by Vania W. Almeida in
Current site
Google Scholar
PubMed
Close
 B.A.
,
Ranjan Gupta Department of Orthopedic Surgery, University of California–Irvine, California

Search for other papers by Ranjan Gupta in
Current site
Google Scholar
PubMed
Close
 M.D.
, and
Allan D. Levi The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and

Search for other papers by Allan D. Levi in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

Segmental nerve defects pose a daunting clinical challenge, as peripheral nerve injury studies have established that there is a critical nerve gap length for which the distance cannot be successfully bridged with current techniques. Construction of a neural prosthesis filled with Schwann cells (SCs) could provide an alternative treatment to successfully repair these long segmental gaps in the peripheral nervous system. The object of this study was to evaluate the ability of autologous SCs to increase the length at which segmental nerve defects can be bridged using a collagen tube.

Methods

The authors studied the use of absorbable collagen conduits in combination with autologous SCs (200,000 cells/μl) to promote axonal growth across a critical size defect (13 mm) in the sciatic nerve of male Fischer rats. Control groups were treated with serum only–filled conduits of reversed sciatic nerve autografts. Animals were assessed for survival of the transplanted SCs as well as the quantity of myelinated axons in the proximal, middle, and distal portions of the channel.

Results

Schwann cell survival was confirmed at 4 and 16 weeks postsurgery by the presence of prelabeled green fluorescent protein–positive SCs within the regenerated cable. The addition of SCs to the nerve guide significantly enhanced the regeneration of myelinated axons from the nerve stump into the proximal (p < 0.001) and middle points (p < 0.01) of the tube at 4 weeks. The regeneration of myelinated axons at 16 weeks was significantly enhanced throughout the entire length of the nerve guide (p < 0.001) as compared with their number in a serum–only filled tube and was similar in number compared with the reversed autograft. Autotomy scores were significantly lower in the animals whose sciatic nerve was repaired with a collagen conduit either without (p < 0.01) or with SCs (p < 0.001) when compared with a reversed autograft.

Conclusions

The technique of adding SCs to a guidance channel significantly enhanced the gap distance that can be repaired after peripheral nerve injury with long segmental defects and holds promise in humans. Most importantly, this study represents some of the first essential steps in bringing autologous SC-based therapies to the domain of peripheral nerve injuries with long segmental defects.

Abbreviations used in this paper:

AGC = axon guidance channel; BMSC = bone marrow stromal cell; FBS = fetal bovine serum; GFP = green fluorescent protein; ITS = intermediary toe spread; PL = print length; PNS = peripheral nerve system; SC = Schwann cell; SFI = sciatic functional index; SKP = skin-derived precursor; TBS = Tris-buffered saline; TS = toe spread.
  • Collapse
  • Expand
  • 1

    Alvarez J, , Moreno RD, , Llanos O, , Inestrosa NC, , Brandan E, & Colby T, et al.: Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases. Neurosci Lett 144:130134, 1992

    • Search Google Scholar
    • Export Citation
  • 2

    Ansselin AD, , Fink T, & Davey DF: Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells. Neuropathol Appl Neurobiol 23:387398, 1997

    • Search Google Scholar
    • Export Citation
  • 3

    Archibald SJ, , Krarup C, , Li ST, & Madison RD: A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol 306:685696, 1991

    • Search Google Scholar
    • Export Citation
  • 4

    Archibald SJ, , Shefner J, , Krarup C, & Madison RD: Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci 15:41094123, 1995

    • Search Google Scholar
    • Export Citation
  • 5

    Bailey SB, , Eichler ME, , Villadiego A, & Rich KM: The influence of fibronectin and laminin during Schwann cell migration and peripheral nerve regeneration through silicon chambers. J Neurocytol 22:176184, 1993

    • Search Google Scholar
    • Export Citation
  • 6

    Bain JR, , Mackinnon SE, & Hunter DA: Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83:129138, 1989

    • Search Google Scholar
    • Export Citation
  • 7

    Bannerman P, & James MA: Molecular mechanisms to improve nerve regeneration following damage to the immature peripheral nervous system. J Bone Joint Surg Am 91:Suppl 4 8789, 2009

    • Search Google Scholar
    • Export Citation
  • 8

    Belkas JS, , Shoichet MS, & Midha R: Peripheral nerve regeneration through guidance tubes. Neurol Res 26:151160, 2004

  • 9

    Biernaskie J, , Sparling JS, , Liu J, , Shannon CP, , Plemel JR, & Xie Y, et al.: Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci 27:95459559, 2007

    • Search Google Scholar
    • Export Citation
  • 10

    Bryan DJ, , Wang KK, & Chakalis-Haley DP: Effect of Schwann cells in the enhancement of peripheral-nerve regeneration. J Reconstr Microsurg 12:439446, 1996

    • Search Google Scholar
    • Export Citation
  • 11

    Calderó J, , Prevette D, , Mei X, , Oakley RA, , Li L, & Milligan C, et al.: Peripheral target regulation of the development and survival of spinal sensory and motor neurons in the chick embryo. J Neurosci 18:356370, 1998

    • Search Google Scholar
    • Export Citation
  • 12

    Carr MM, , Best TJ, , Mackinnon SE, & Evans PJ: Strain differences in autotomy in rats undergoing sciatic nerve transection or repair. Ann Plast Surg 28:538544, 1992

    • Search Google Scholar
    • Export Citation
  • 13

    Chen CJ, , Ou YC, , Liao SL, , Chen WY, , Chen SY, & Wu CW, et al.: Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 204:443453, 2007

    • Search Google Scholar
    • Export Citation
  • 14

    Clavijo-Alvarez JA, , Nguyen VT, , Santiago LY, , Doctor JS, , Lee WP, & Marra KG: Comparison of biodegradable conduits within aged rat sciatic nerve defects. Plast Reconstr Surg 119:18391851, 2007

    • Search Google Scholar
    • Export Citation
  • 15

    Colen KL, , Choi M, & Chiu DT: Nerve grafts and conduits. Plast Reconstr Surg 124:6 Suppl e386e394, 2009

  • 16

    David S, & Aguayo AJ: Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931933, 1981

    • Search Google Scholar
    • Export Citation
  • 17

    de Medinaceli L, , Freed WJ, & Wyatt RJ: An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634643, 1982

    • Search Google Scholar
    • Export Citation
  • 18

    Dellon AL, & Mackinnon SE: An alternative to the classical nerve graft for the management of the short nerve gap. Plast Reconstr Surg 82:849856, 1988

    • Search Google Scholar
    • Export Citation
  • 19

    Dezawa M, , Takahashi I, , Esaki M, , Takano M, & Sawada H: Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:17711776, 2001

    • Search Google Scholar
    • Export Citation
  • 20

    Elhassan B, , Bishop A, & Shin A: Trapezius transfer to restore external rotation in a patient with a brachial plexus injury. A case report. J Bone Joint Surg Am 91:939944, 2009

    • Search Google Scholar
    • Export Citation
  • 21

    Fecho K, & Valtschanoff JG: Acute inflammatory and neuropathic pain in Lewis and Fischer rats. J Neuroendocrinol 18:504513, 2006

  • 22

    Follenzi A, , Ailles LE, , Bakovic S, , Geuna M, & Naldini L: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217222, 2000

    • Search Google Scholar
    • Export Citation
  • 23

    Francel PC, , Francel TJ, , Mackinnon SE, & Hertl C: Enhancing nerve regeneration across a silicone tube conduit by using interposed short-segment nerve grafts. J Neurosurg 87:887892, 1997

    • Search Google Scholar
    • Export Citation
  • 24

    Friedman B, , Wong V, & Lindsay RM: Review: axons, Schwann cells, and neurotrophic factors. Neuroscientist 1:192199, 1995

  • 25

    Gallico GG III, , O'Connor NE, , Compton CC, , Kehinde O, & Green H: Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311:448451, 1984

    • Search Google Scholar
    • Export Citation
  • 26

    Green H, , Kehinde O, & Thomas J: Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A 76:56655668, 1979

    • Search Google Scholar
    • Export Citation
  • 27

    Grieshammer U, , Lewandoski M, , Prevette D, , Oppenheim RW, & Martin GR: Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev Biol 197:234247, 1998

    • Search Google Scholar
    • Export Citation
  • 28

    Guénard V, , Kleitman N, , Morrissey TK, , Bunge RP, & Aebischer P: Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 12:33103320, 1992

    • Search Google Scholar
    • Export Citation
  • 29

    Gurney ME, , Apatoff BR, & Heinrich SP: Suppression of terminal axonal sprouting at the neuromuscular junction by monoclonal antibodies against a muscle-derived antigen of 56,000 daltons. J Cell Biol 102:22642272, 1986

    • Search Google Scholar
    • Export Citation
  • 30

    Harley BA, , Spilker MH, , Wu JW, , Asano K, , Hsu HP, & Spector M, et al.: Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs 176:153165, 2004

    • Search Google Scholar
    • Export Citation
  • 31

    Hess JR, , Brenner MJ, , Fox IK, , Nichols CM, , Myckatyn TM, & Hunter DA, et al.: Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg 119:246259, 2007

    • Search Google Scholar
    • Export Citation
  • 32

    Hollowell JP, , Villadiego A, & Rich KM: Sciatic nerve regeneration across gaps within silicone chambers: long-term effects of NGF and consideration of axonal branching. Exp Neurol 110:4551, 1990

    • Search Google Scholar
    • Export Citation
  • 33

    Hood B, , Levene HB, & Levi AD: Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 26:2 E4, 2009

    • Search Google Scholar
    • Export Citation
  • 34

    Ide C, , Tohyama K, , Yokota R, , Nitatori T, & Onodera S: Schwann cell basal lamina and nerve regeneration. Brain Res 288:6175, 1983

  • 35

    Kim DH, , Connolly SE, , Kline DG, , Voorhies RM, , Smith A, & Powell M, et al.: Labeled Schwann cell transplants versus sural nerve grafts in nerve repair. J Neurosurg 80:254260, 1994

    • Search Google Scholar
    • Export Citation
  • 36

    Kline DG, & Hudson AR, Acute injuries of peripheral nerves. Youmans JR: Neurological Surgery: A Comprehensive Reference Guide to the Diagnosis and Management of Neurosurgical Problems Philadelphia, WB Saunders, 1990. 24232510

    • Search Google Scholar
    • Export Citation
  • 37

    Krarup C, , Archibald SJ, & Madison RD: Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve. Ann Neurol 51:6981, 2002

    • Search Google Scholar
    • Export Citation
  • 38

    Lang EM, , Schlegel N, , Reiners K, , Hofmann GO, , Sendtner M, & Asan E: Single-dose application of CNTF and BDNF improves remyelination of regenerating nerve fibers after C7 ventral root avulsion and replantation. J Neurotrauma 25:384400, 2008

    • Search Google Scholar
    • Export Citation
  • 39

    Lariviere WR, , Sattar MA, & Melzack R: Inflammation-susceptible Lewis rats show less sensitivity than resistant Fischer rats in the formalin inflammatory pain test and with repeated thermal testing. J Neurophysiol 95:28892897, 2006

    • Search Google Scholar
    • Export Citation
  • 40

    Lee AC, , Yu VM, , Lowe JB III, , Brenner MJ, , Hunter DA, & Mackinnon SE, et al.: Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 184:295303, 2003

    • Search Google Scholar
    • Export Citation
  • 41

    Levi ADO: Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods 68:2126, 1996

    • Search Google Scholar
    • Export Citation
  • 42

    Levi ADO, & Bunge RP: Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol 130:4152, 1994

    • Search Google Scholar
    • Export Citation
  • 43

    Levi ADO, , Guénard V, , Aebischer P, & Bunge RP: The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J Neurosci 14:13091319, 1994

    • Search Google Scholar
    • Export Citation
  • 44

    Levi ADO, , Sonntag VKH, , Dickman C, , Mather J, , Li RH, & Cordoba SC, et al.: The role of cultured Schwann cell grafts in the repair of gaps within the peripheral nervous system of primates. Exp Neurol 143:2536, 1997

    • Search Google Scholar
    • Export Citation
  • 45

    Li ST, , Archibald SJ, , Krarup C, & Madison RD: Peripheral nerve repair with collagen conduits. Clin Mater 9:195200, 1992

  • 46

    Lundborg G, , Dahlin LB, & Danielsen N: Ulnar nerve repair by the silicone chamber technique. Case report. Scand J Plast Reconstr Surg Hand Surg 25:7982, 1991

    • Search Google Scholar
    • Export Citation
  • 47

    Lundborg G, , Dahlin LB, , Danielsen N, , Gelberman RH, , Longo FM, & Powell HC, et al.: Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol 76:361375, 1982

    • Search Google Scholar
    • Export Citation
  • 48

    Lundborg G, , Dahlin LB, , Danielsen N, , Hansson HA, , Johannesson A, & Longo FM, et al.: Nerve regeneration across an extended gap: a neurobiological view of nerve repair and the possible involvement of neuronotrophic factors. J Hand Surg Am 7:580587, 1982

    • Search Google Scholar
    • Export Citation
  • 49

    Lundborg G, , Gelberman RH, , Longo FM, , Powell HC, & Varon S: In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol 41:412422, 1982

    • Search Google Scholar
    • Export Citation
  • 50

    Lundborg G, , Rosén B, , Abrahamson SO, , Dahlin L, & Danielsen N: Tubular repair of the median nerve in the human forearm. Preliminary findings. J Hand Surg Br 19:273276, 1994

    • Search Google Scholar
    • Export Citation
  • 51

    Lundborg G, , Rosén B, , Dahlin L, , Danielsen N, & Holmberg J: Tubular versus conventional repair of median and ulnar nerves in the human forearm: early results from a prospective, randomized, clinical study. J Hand Surg Am 22:99106, 1997

    • Search Google Scholar
    • Export Citation
  • 52

    Mackinnon SE, , Dellon AL, , Hudson AR, & Hunter DA: Nerve regeneration through a pseudosynovial sheath in a primate model. Plast Reconstr Surg 75:833841, 1985

    • Search Google Scholar
    • Export Citation
  • 53

    Madison RD, , Archibald SJ, , Lacin R, & Krarup C: Factors contributing to preferential motor reinnervation in the primate peripheral nervous system. J Neurosci 19:1100711016, 1999

    • Search Google Scholar
    • Export Citation
  • 54

    McKenzie IA, , Biernaskie J, , Toma JG, , Midha R, & Miller FD: Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:66516660, 2006

    • Search Google Scholar
    • Export Citation
  • 55

    Meijs MF, , Timmers L, , Pearse DD, , Tresco PA, , Bates ML, & Joosten EA, et al.: Basic fibroblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord. J Neurotrauma 21:14151430, 2004

    • Search Google Scholar
    • Export Citation
  • 56

    Milligan CE, , Oppenheim RW, & Schwartz LM: Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J Neurobiol 25:10051016, 1994

    • Search Google Scholar
    • Export Citation
  • 57

    Moore A, , Kasukurthi R, , Magill CK, , Farhadi HF, , Borschel G, & Mackinnon SE: Limitations of conduits in peripheral nerve repair. Hand (NY) 4:180186, 2009

    • Search Google Scholar
    • Export Citation
  • 58

    Morrissey TK, , Kleitman N, & Bunge RP: Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J Neurosci 11:24332442, 1991

    • Search Google Scholar
    • Export Citation
  • 59

    Nandoe Tewarie RS, , Hurtado A, , Bartels RH, , Grotenhuis A, & Oudega M: Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32:105114, 2009

    • Search Google Scholar
    • Export Citation
  • 60

    Ng SS, , Kwan MK, & Ahmad TS: Quantitative and qualitative evaluation of sural nerve graft donor site. Med J Malaysia 61:Suppl B 1317, 2006

    • Search Google Scholar
    • Export Citation
  • 61

    Paino CL, & Bunge MB: Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord. Exp Neurol 114:254257, 1991

    • Search Google Scholar
    • Export Citation
  • 62

    Radtke C, & Vogt PM: Peripheral nerve regeneration: a current perspective. Eplasty 9:e47, 2009

  • 63

    Reynolds JL, , Urbanchek MS, , Asato H, & Kuzon WM Jr: Deletion of individual muscles alters rat walking-track parameters. J Reconstr Microsurg 12:461466, 1996

    • Search Google Scholar
    • Export Citation
  • 64

    Richardson PM, , Issa VM, & Shemie S: Regeneration and retrograde degeneration of axons in the rat optic nerve. J Neurocytol 11:949966, 1982

    • Search Google Scholar
    • Export Citation
  • 65

    Rodríguez FJ, , Verdú E, , Ceballos D, & Navarro X: Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol 161:571584, 2000

    • Search Google Scholar
    • Export Citation
  • 66

    Seddon HJ: The use of autogenous grafts for the repair of large gaps in peripheral nerves. Br J Surg 35:151167, 1947

  • 67

    Shenaq JM, , Shenaq SM, & Spira M: Reliability of sciatic function index in assessing nerve regeneration across a 1 cm gap. Microsurgery 10:214219, 1989

    • Search Google Scholar
    • Export Citation
  • 68

    Sinis N, , Kraus A, , Papagiannoulis N, , Werdin F, , Schittenhelm J, & Meyermann R, et al.: Concepts and developments in peripheral nerve surgery. Clin Neuropathol 28:247262, 2009

    • Search Google Scholar
    • Export Citation
  • 69

    Takahashi K, & Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663676, 2006

    • Search Google Scholar
    • Export Citation
  • 70

    Takami T, , Oudega M, , Bates ML, , Wood PM, , Kleitman N, & Bunge MB: Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22:66706681, 2002

    • Search Google Scholar
    • Export Citation
  • 71

    Tantuwaya VS, , Bailey SB, , Schmidt RE, , Villadiego A, , Tong JX, & Rich KM: Peripheral nerve regeneration through silicone chambers in streptozocin-induced diabetic rats. Brain Res 759:5866, 1997

    • Search Google Scholar
    • Export Citation
  • 72

    Tyner TR, , Parks N, , Faria S, , Simons M, , Stapp B, & Curtis B, et al.: Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg 193:e1e6, 2007

    • Search Google Scholar
    • Export Citation
  • 73

    Varejão ASP, , Meek MF, , Ferreira AJA, , Patrício JAB, & Cabrita AMS: Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108:19, 2001

    • Search Google Scholar
    • Export Citation
  • 74

    Varejão ASP, , Melo-Pinto P, , Meek MF, , Filipe VM, & Bulas-Cruz J: Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 26:186194, 2004

    • Search Google Scholar
    • Export Citation
  • 75

    Vaughan DW: Effects of advancing age on peripheral nerve regeneration. J Comp Neurol 323:219237, 1992

  • 76

    Wakefield C, & Shonnard N: Regeneration of cauda equina dorsal nerve roots after cross anastomosis in the cat. Exp Neurol 72:662671, 1981

    • Search Google Scholar
    • Export Citation
  • 77

    Wall PD, , Devor M, , Inbal R, , Scadding JW, , Schonfeld D, & Seltzer Z, et al.: Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7:103111, 1979

    • Search Google Scholar
    • Export Citation
  • 78

    Walsh S, & Midha R: Use of stem cells to augment nerve injury repair. Neurosurgery 65:4 Suppl A80A86, 2009

  • 79

    Weber RV, & Mackinnon SE: Bridging the neural gap. Clin Plast Surg 32:605616, viii, 2005

  • 80

    Whitlock EL, , Tuffaha SH, , Luciano JP, , Yan Y, , Hunter DA, & Magill CK, et al.: Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39:787799, 2009

    • Search Google Scholar
    • Export Citation
  • 81

    Williams LR: Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. Neurochem Res 12:851860, 1987

    • Search Google Scholar
    • Export Citation
  • 82

    Williams LR, , Danielsen N, , Müller H, & Varon S: Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. J Comp Neurol 264:284290, 1987

    • Search Google Scholar
    • Export Citation
  • 83

    Williams LR, , Longo FM, , Powell HC, , Lundborg G, & Varon S: Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol 218:460470, 1983

    • Search Google Scholar
    • Export Citation
  • 84

    Xu XM, , Chen A, , Guénard V, , Kleitman N, & Bunge MB: Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 26:116, 1997

    • Search Google Scholar
    • Export Citation
  • 85

    Xu XM, , Guénard V, , Kleitman N, & Bunge MB: Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 351:145160, 1995

    • Search Google Scholar
    • Export Citation
  • 86

    Zhang P, , He X, , Liu K, , Zhao F, , Fu Z, & Zhang D, et al.: Bone marrow stromal cells differentiated into functional Schwann cells in injured rats sciatic nerve. Artif Cells Blood Substit Immobil Biotechnol 32:509518, 2004

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1359 262 5
Full Text Views 383 28 0
PDF Downloads 284 49 0
EPUB Downloads 0 0 0