Decompressive craniectomy using gelatin film and future bone flap replacement

Technical note

Azeem O. Oladunjoye Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California

Search for other papers by Azeem O. Oladunjoye in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Rudolph J. Schrot Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California

Search for other papers by Rudolph J. Schrot in
Current site
Google Scholar
PubMed
Close
 M.D.
,
Marike Zwienenberg-Lee Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California

Search for other papers by Marike Zwienenberg-Lee in
Current site
Google Scholar
PubMed
Close
 M.D.
,
J. Paul Muizelaar Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California

Search for other papers by J. Paul Muizelaar in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
, and
Kiarash Shahlaie Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California

Search for other papers by Kiarash Shahlaie in
Current site
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Object

Decompressive craniectomy plays an important role in the management of patients with traumatic brain injury (TBI) and stroke. Risks of decompressive craniectomy include those associated with cranioplasty, and may be related to adhesions that develop between the brain surface and overlying scalp and temporalis muscle. The authors report their institutional experience using a multilayered technique (collagen and gelatin film barriers) to facilitate safe and rapid cranioplasty following decompressive craniectomy.

Methods

The authors conducted a retrospective chart review of 62 consecutive adult and pediatric patients who underwent decompressive craniectomy and subsequent cranioplasty between December 2007 and January 2011. Diagnoses included TBI, ischemic stroke, intraparenchymal hemorrhage, or subarachnoid hemorrhage. A detailed review of clinical charts was performed, including anesthesia records and radiographic study results.

Results

The majority of patients underwent unilateral hemicraniectomy (n = 56), with indications for surgery including midline shift (n = 37) or elevated intracranial pressure (n = 25). Multilayered decompressive craniectomy was safe and easy to perform, and was associated with a low complication rate, minimal operative time, and limited blood loss.

Conclusions

Decompressive craniectomy repair using an absorbable gelatin film barrier facilitates subsequent cranioplasty by preventing adhesions between intracranial contents and the overlying galea aponeurotica and temporalis muscle fascia. This technique makes cranioplasty dissection faster and potentially safer, which may improve clinical outcomes. The indications for gelatin film should be expanded to include placement in the epidural space after craniectomy.

Abbreviations used in this paper:

ICP = intracranial pressure; IPH = intraparenchymal hemorrhage; MCA = middle cerebral artery; SAH = subarachnoid hemorrhage; TBI = traumatic brain injury; VP = ventriculoperitoneal.
  • Collapse
  • Expand
  • 1

    Aarabi B, , Hesdorffer DC, , Ahn ES, , Aresco C, , Scalea TM, & Eisenberg HM: Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg 104:469479, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Bullock MR, , Chesnut R, , Ghajar J, , Gordon D, , Hartl R, & Newell DW, et al.: Surgical management of acute subdural hematomas. Neurosurgery 58:3 Suppl S16S24, 2006

    • Search Google Scholar
    • Export Citation
  • 3

    Bulters D, & Belli A: Placement of silicone sheeting at decompressive craniectomy to prevent adhesions at cranioplasty. Br J Neurosurg 24:7576, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Chang V, , Hartzfeld P, , Langlois M, , Mahmood A, & Seyfried D: Outcomes of cranial repair after craniectomy. Clinical article. J Neurosurg 112:11201124, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Chibbaro S, & Tacconi L: Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol 68:632638, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Chun HJ, & Yi HJ: Efficacy and safety of early cranioplasty, at least within 1 month. J Craniofac Surg 22:203207, 2011

  • 7

    Cooper DJ, , Rosenfeld JV, , Murray L, , Arabi YM, , Davies AR, & D'Urso P, et al.: Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364:14931502, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Danish SF, , Samdani A, , Hanna A, , Storm P, & Sutton L: Experience with acellular human dura and bovine collagen matrix for duraplasty after posterior fossa decompression for Chiari malformations. J Neurosurg 104:1 Suppl 1620, 2006

    • Search Google Scholar
    • Export Citation
  • 9

    Gooch MR, , Gin GE, , Kenning TJ, & German JW: Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 26:6 E9, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Guerra WK, , Gaab MR, , Dietz H, , Mueller JU, , Piek J, & Fritsch MJ: Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg 90:187196, 1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Guresir E, , Schuss P, , Seifert V, & Vatter H: Decompressive craniectomy in children: single center series and systematic review. Neurosurgery 70:881889, 2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Guresir E, , Vatter H, , Schuss P, , Oszvald A, , Raabe A, & Seifert V, et al.: Rapid closure technique in decompressive craniectomy. Clinical article. J Neurosurg 114:954960, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Hofmeijer J, , Kappelle LJ, , Algra A, , Amelink GJ, , van Gijn J, & van der Worp HB: Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol 8:326333, 2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Honeybul S, & Ho KM: Long-term complications of decompressive craniectomy for head injury. J Neurotrauma 28:929935, 2011

  • 15

    Horaczek JA, , Zierski J, & Graewe A: Collagen matrix in decompressive hemicraniectomy. Neurosurgery 63:ONS176ONS181, 2008

  • 16

    Huang AP, , Tu YK, , Tsai YH, , Chen YS, , Hong WC, & Yang CC, et al.: Decompressive craniectomy as the primary surgical intervention for hemorrhagic contusion. J Neurotrauma 25:13471354, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Huang X, & Wen L: Technical considerations in decompressive craniectomy in the treatment of traumatic brain injury. Int J Med Sci 7:385390, 2010

    • Search Google Scholar
    • Export Citation
  • 18

    Hutchinson PJ, , Corteen E, , Czosnyka M, , Mendelow AD, , Menon DK, & Mitchell P, et al.: Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study (http://www.RESCUEicp.com). Acta Neurochir Suppl 96:1720, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Jüttler E, , Schwab S, , Schmiedek P, , Unterberg A, , Hennerici M, & Woitzik J, et al.: Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): a randomized, controlled trial. Stroke 38:25182525, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Lee CH, , Cho DS, , Jin SC, , Kim SH, & Park DB: Usefulness of silicone elastomer sheet as another option of adhesion preventive material during craniectomies. Clin Neurol Neurosurg 109:667671, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Matsumura G, , Shin'oka T, , Ikada Y, , Sakamoto T, & Kurosawa H: Novel anti-adhesive pericardial substitute for multistage cardiac surgery. Asian Cardiovasc Thorac Ann 16:309312, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    McCall TD, , Fults DW, & Schmidt RH: Use of resorbable collagen dural substitutes in the presence of cranial and spinal infections—report of 3 cases. Surg Neurol 70:9297, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    McGhee MA, & Dornhoffer JL: The effect of gelfilm in the prevention of fibrosis in the middle ear of the animal model. Am J Otol 20:712716, 1999

    • Search Google Scholar
    • Export Citation
  • 24

    Missori P, , Polli FM, , Peschillo S, , D'Avella E, , Paolini S, & Miscusi M: Double dural patch in decompressive craniectomy to preserve the temporal muscle: technical note. Surg Neurol 70:437439, 2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Miyake S, , Fujita A, , Aihara H, & Kohmura E: New technique for decompressive duraplasty using expanded polytetrafluoroethylene dura substitute—technical note. Neurol Med Chir (Tokyo) 46:104106, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Münch E, , Horn P, , Schürer L, , Piepgras A, , Paul T, & Schmiedek P: Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery 47:315323, 2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Nakagawa S, , Hayashi T, , Anegawa S, , Nakashima S, , Shimokawa S, & Furukawa Y: Postoperative infection after duraplasty with expanded polytetrafluoroethylene sheet. Neurol Med Chir (Tokyo) 43:120124, 2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Narotam PK, , Jose S, , Nathoo N, , Taylon C, & Vora Y: Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine (Phila Pa 1976) 29:28612869, 2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Nishizawa S, , Ryu H, , Yokoyama T, , Kitamura S, & Uemura K: Intentionally staged operation for large and high-flow cerebral arteriovenous malformation. J Clin Neurosci 5:Suppl 7883, 1998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Polin RS, , Shaffrey ME, , Bogaev CA, , Tisdale N, , Germanson T, & Bocchicchio B, et al.: Decompressive bifrontal craniectomy in the treatment of severe refractory posttraumatic cerebral edema. Neurosurgery 41:8494, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Quinn TM, , Taylor JJ, , Magarik JA, , Vought E, , Kindy MS, & Ellegala DB: Decompressive craniectomy: technical note. Acta Neurol Scand 123:239244, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Ragel BT, , Klimo P Jr, , Martin JE, , Teff RJ, , Bakken HE, & Armonda RA: Wartime decompressive craniectomy: technique and lessons learned. Neurosurg Focus 28:5 E2, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Sade B, , Oya S, & Lee JH: Non-watertight dural reconstruction in meningioma surgery: results in 439 consecutive patients and a review of the literature. Clinical article. J Neurosurg 114:714718, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Skoglund TS, , Eriksson-Ritzén C, , Jensen C, & Rydenhag B: Aspects on decompressive craniectomy in patients with traumatic head injuries. J Neurotrauma 23:15021509, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Stephens FL, , Mossop CM, , Bell RS, , Tigno T Jr, , Rosner MK, & Kumar A, et al.: Cranioplasty complications following wartime decompressive craniectomy. Neurosurg Focus 28:5 E3, 2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Stiver SI: Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus 26:6 E7, 2009

  • 37

    Vahedi K, , Vicaut E, , Mateo J, , Kurtz A, , Orabi M, & Guichard JP, et al.: Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke 38:25062517, 2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Vakis A, , Koutentakis D, , Karabetsos D, & Kalostos G: Use of polytetrafluoroethylene dural substitute as adhesion preventive material during craniectomies. Clin Neurol Neurosurg 108:798802, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Wirtz CR, , Steiner T, , Aschoff A, , Schwab S, , Schnippering H, & Steiner HH, et al.: Hemicraniectomy with dural augmentation in medically uncontrollable hemispheric infarction. Neurosurg Focus 2:5 E3, 1997

    • Search Google Scholar
    • Export Citation
  • 40

    Yamagata S, , Goto K, , Oda Y, & Kikuchi H: Clinical experience with expanded polytetrafluoroethylene sheet used as an artificial dura mater. Neurol Med Chir (Tokyo) 33:582585, 1993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Yang XJ, , Hong GL, , Su SB, & Yang SY: Complications induced by decompressive craniectomies after traumatic brain injury. Chin J Traumatol 6:99103, 2003

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 3077 410 18
Full Text Views 758 30 2
PDF Downloads 425 39 3
EPUB Downloads 0 0 0