Sweet spots of standard and directional leads in patients with refractory essential tremor: white matter pathways associated with maximal tremor improvement

View More View Less
  • 1 Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska;
  • | 2 Department of Neurosurgery, University of California, Los Angeles, California;
  • | 3 Department of Surgery, Division of Neurosurgery and
  • | 4 Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada;
  • | 5 Department of Neurosurgery, Cantonal Hospital St. Gallen, Switzerland; and
  • | 6 Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

In patients with essential tremor (ET) treated with standard deep brain stimulation (sDBS) whose ET had progressed and who no longer received optimal benefit from sDBS, directional deep brain stimulation (dDBS) may provide better tremor control. Current steering may provide better coverage of subcortical structures related to tremor control in patients with ET and significant progression without optimal response to sDBS.

METHODS

This study included 6 patients with ET initially treated with sDBS whose tremor later progressed and who then underwent reimplantation with dDBS to optimize their tremor control. To investigate the differences in the local effects of sDBS and dDBS, the authors generated the volume of tissue activation (VTA) to calculate the sweet spots associated with the best possible tremor control with no side effects. Then, to investigate the anatomical structures associated with maximal tremor control, the white matter pathways of the posterior subthalamic areas (PSAs) were generated and their involvement with the sDBS and dDBS sweet spots was calculated.

RESULTS

Tremor improvement was significantly better with dDBS (68.4%) than with sDBS (48.7%) (p = 0.017). The sDBS sweet spot was located within the ventral intermediate nucleus, whereas the sweet spot of the dDBS was mainly located within the PSA. The sweet spots of both sDBS and dDBS involved a similar portion of the cerebellothalamic pathway. However, the dDBS had greater involvement of the pallidofugal pathways than the sDBS.

CONCLUSIONS

In patients with ET treated with sDBS who later had ET progression, dDBS provided better tremor control, which was related to directionality and a more ventral position. The involvement of both the cerebellothalamic and pallidofugal pathways obtained with dDBS is associated with additional improvement over the sDBS.

ABBREVIATIONS

CbT = cerebellothalamic; CeM = centromedian nucleus; DBS = deep brain stimulation; dDBS = directional DBS; ET = essential tremor; HARDI = high angular resolution diffusion imaging; LPo = lateropolaris; MNI = Montreal Neurological Institute; Pfug = pallidofugal; RN = red nucleus; ROI = region of interest; sDBS = standard DBS; SIFT = spherical-deconvolution informed filtering of tractograms; SN = substantia nigra; STN = subthalamic nucleus; TRS = tremor rating scale; Vim = ventral intermediate nucleus; Vo = ventralis oralis; Voa = Vo anterior; Vop = Vo posterior; VTA = volume of tissue activation; WM = white matter; ZI = zona incerta.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Paschen S, Forstenpointner J, Becktepe J, et al. Long-term efficacy of deep brain stimulation for essential tremor: an observer-blinded study. Neurology. 2019;92(12):e1378e1386.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Krüger MT, Avecillas-Chasin JM, Tamber MS, et al. Tremor and quality of life in patients with advanced essential tremor before and after replacing their standard deep brain stimulation with a directional system. Neuromodulation. 2021;24(2):353360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Barbe MT, Reker P, Hamacher S, et al. DBS of the PSA and the VIM in essential tremor: a randomized, double-blind, crossover trial. Neurology. 2018;91(6):e543e550.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Blomstedt P, Sandvik U, Fytagoridis A, Tisch S. The posterior subthalamic area in the treatment of movement disorders: past, present, and future. Neurosurgery. 2009;64(6):10291042.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Parent M, Parent A. The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord. 2004;10(4):203211.

  • 6

    Reinacher PC, Krüger MT, Coenen VA, et al. Determining the orientation of directional deep brain stimulation electrodes using 3D rotational fluoroscopy. AJNR Am J Neuroradiol. 2017;38(6):11111116.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Miocinovic S, Noecker AM, Maks CB, Butson CR, McIntyre CC. Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. Acta Neurochir Suppl. 2007;97(Pt 2):561567.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC. An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics. 2011;9(4):381400.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Dembek TA, Barbe MT, Åström M, et al. Probabilistic mapping of deep brain stimulation effects in essential tremor. Neuroimage Clin. 2016;13:164173.

  • 10

    Akram H, Sotiropoulos SN, Jbabdi S, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage. 2017;158(7):332345.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Avecillas-Chasin JM, Honey CR. Modulation of nigrofugal and pallidofugal pathways in deep brain stimulation for Parkinson disease. Neurosurgery. 2020;86(4):E387E397.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Varentsova A, Zhang S, Arfanakis K. Development of a high angular resolution diffusion imaging human brain template. Neuroimage. 2014;91:177186.

  • 13

    Edlow BL, Takahashi E, Wu O, et al. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 2012;71(6):531546.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Keuken MC, Bazin PL, Crown L, et al. Quantifying inter-individual anatomical variability in the subcortex using 7 T structural MRI. Neuroimage. 2014;94:4046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Xiao Y, Fonov V, Chakravarty MM, et al. A dataset of multi-contrast population-averaged brain MRI atlases of a Parkinson’s disease cohort. Data Brief. 2017;12:370379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Diedrichsen J, Maderwald S, Küper M, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):17861794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Ford E, Russell GV. Connections of the cerebellum. Origin, course and terminations of the brachium conjunctivum. Tex Rep Biol Med. 1964;22:504516.

  • 18

    Percherson G. The thalamic territory of cerebellar afferents and the lateral region of the thalamus of the macaque in sterotaxic ventricular coordinates. J Hirnforsch. 1977;18(5):376400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298312.

  • 20

    Avecillas-Chasin JM, Alonso-Frech F, Parras O, Del Prado N, Barcia JA. Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg Rev. 2015;38(4):739751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Schlaier J, Anthofer J, Steib K, et al. Deep brain stimulation for essential tremor: targeting the dentato-rubro-thalamic tract?. Neuromodulation. 2015;18(2):105112.

  • 23

    Stover NP, Okun MS, Evatt ML, Raju DV, Bakay RAE, Vitek JL. Stimulation of the subthalamic nucleus in a patient with Parkinson disease and essential tremor. Arch Neurol. 2005;62(1):141143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Lind G, Schechtmann G, Lind C, Winter J, Meyerson BA, Linderoth B. Subthalamic stimulation for essential tremor. Short- and long-term results and critical target area. Stereotact Funct Neurosurg. 2008;86(4):253258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Nieuwenhuys R, Voogd J, Van Huijzen C. The Human Central Nervous System. A Synopsis and Atlas. Springer;1978:253286,427653.

  • 26

    Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. 2nd ed. Thieme Stuttgart;1977.

  • 27

    Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338350.

  • 28

    Smith RE, Tournier JD, Calamante F, Connelly A. The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage. 2015;104:253265.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kuramoto S, Watanabe M. Relief of idiopathic intention tremor by stereotaxic thalamotomy. Kurume Med J. 1971;18(3):147152.

  • 30

    Hirai T, Miyazaki M, Nakajima H, Shibazaki T, Ohye C. The correlation between tremor characteristics and the predicted volume of effective lesions in stereotaxic nucleus ventralis intermedius thalamotomy. Brain. 1983;106(Pt 4):1001-1018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Isaacs DA, Butler J, Sukul V, et al. Confined thalamic deep brain stimulation in refractory essential tremor. Stereotact Funct Neurosurg. 2018;96(5):296304.

  • 32

    Hidding U, Schaper M, Moll CKE, et al. Mapping stimulation-induced beneficial and adverse effects in the subthalamic area of essential tremor patients. Parkinsonism Relat Disord. 2019;64:150155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Sandoe C, Krishna V, Basha D, et al. Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018;11(3):592599.

  • 34

    Papavassiliou E, Rau G, Heath S, et al. Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery. 2004;54(5):11201130.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Carpenter MB, Glinsman W, Fabrega H. Effects of secondary pallidal and striatal lesions upon cerebellar dyskinesia. Neurology. 1958;8(5):352358.

  • 36

    Katayama Y, Kano T, Kobayashi K, Oshima H, Fukaya C, Yamamoto T. Difference in surgical strategies between thalamotomy and thalamic deep brain stimulation for tremor control. J Neurol. 2005;252(suppl 4):IV17IV22.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Pedrosa DJ, Reck C, Florin E, et al. Essential tremor and tremor in Parkinson’s disease are associated with distinct ‘tremor clusters’ in the ventral thalamus. Exp Neurol. 2012;237(2):435443.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69(2):269281.

  • 39

    Thomas C, Ye FQ, Irfanoglu MO, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A. 2014;111(46):1657416579.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. AJNR Am J Neuroradiol. 2009;30(6):12401243.

  • 41

    Slotty PJ, Kamp MA, Wille C, Kinfe TM, Steiger HJ, Vesper J. The impact of brain shift in deep brain stimulation surgery: observation and obviation. Acta Neurochir (Wien). 2012;154(11):20632068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Sillay KA, Kumbier LM, Ross C, et al. Perioperative brain shift and deep brain stimulating electrode deformation analysis: implications for rigid and non-rigid devices. Ann Biomed Eng. 2013;41(2):293304.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Pourfar MH, Mogilner AY, Farris S, et al. Model-based deep brain stimulation programming for Parkinson’s disease: the GUIDE pilot study. Stereotact Funct Neurosurg. 2015;93(4):231239.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Avecillas-Chasin J. Letter to the Editor. Pallidothalamic pathway stimulation in DBS for dystonia. J Neurosurg. 2019;132(3):982984.

  • 45

    Avecillas-Chasin JM, Jimenez-Shahed J, Miravite J, Bressman S, Kopell BH. Deep brain stimulation of the pallidofugal pathways to rescue severe life-threatening dyskinesias after STN-DBS lead implantation. Stereotact Funct Neurosurg. 2022;100(2):9598.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Edlow BL, Mareyam A, Horn A, et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data. 2019;6(1):244.

Metrics

All Time Past Year Past 30 Days
Abstract Views 504 504 142
Full Text Views 78 78 24
PDF Downloads 111 111 29
EPUB Downloads 0 0 0