Radiological identification of the globus pallidus motor subregion in Parkinson’s disease

View More View Less
  • 1 Departments of Neurological Surgery and
  • | 2 Neurology, The Ohio State University, Columbus, Ohio; and
  • | 3 Department of Neurological Surgery, University of Pittsburgh, Pennsylvania
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Globus pallidus (GP) lesioning improves motor symptoms of Parkinson’s disease (PD) and is occasionally associated with nonmotor side effects. Although these variable clinical effects were shown to be site-specific within the GP, the motor and nonmotor subregions have not been distinguished radiologically in patients with PD. The GP was recently found to have a distinct radiological signature on diffusion MRI (dMRI), potentially related to its unique cellular content and organization (or tissue architecture). In this study, the authors hypothesize that the magnitude of water diffusivity, a surrogate for tissue architecture, will radiologically distinguish motor from nonmotor GP subregions in patients with PD. They also hypothesize that the therapeutic focused ultrasound pallidotomy lesions will preferentially overlap the motor subregion.

METHODS

Diffusion MRI from healthy subjects (n = 45, test-retest S1200 cohort) and PD patients (n = 33) was parcellated based on the magnitude of water diffusivity in the GP, as measured orientation distribution function (ODF). A clustering algorithm was used to identify GP parcels with distinct ODF magnitude. The individual parcels were used as seeds for tractography to distinguish motor from nonmotor subregions. The locations of focused ultrasound lesions relative to the GP parcels were also analyzed in 11 patients with PD.

RESULTS

Radiologically, three distinct parcels were identified within the GP in healthy controls and PD patients: posterior, central, and anterior. The posterior and central parcels comprised the motor subregion and the anterior parcel was classified as a nonmotor subregion based on their tractography connections. The focused ultrasound lesions preferentially overlapped with the motor subregion (posterior more than central). The hotspots for motor improvement were localized in the posterior GP parcel.

CONCLUSIONS

Using a data-driven approach of ODF-based parcellation, the authors radiologically distinguished GP motor subregions in patients with PD. This method can aid stereotactic targeting in patients with PD undergoing surgical treatments, especially focused ultrasound ablation.

ABBREVIATIONS

DBS = deep brain stimulation; dMRI = diffusion MRI; FGATIR = fast gray matter acquisition T1 inversion recovery; FUSA = focused ultrasound ablation; GP = globus pallidus; HCP = Human Connectome Project; MNI = Montreal Neurological Institute; ODF = orientation distribution function; PD = Parkinson’s disease; UDysRS = Unified Dyskinesia Rating Scale; UPDRS-III = Unified PD Rating Scale, part III.

Supplementary Materials

    • Supplemental Tables 1 and 2 (PDF 209 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Weaver F, Follett K, Hur K, Ippolito D, Stern M. Deep brain stimulation in Parkinson disease: a metaanalysis of patient outcomes. J Neurosurg. 2005;103(6):956967.

    • Search Google Scholar
    • Export Citation
  • 2

    de Bie RM, de Haan RJ, Nijssen PC, Rutgers AW, Beute GN, Bosch DA, et al. Unilateral pallidotomy in Parkinson’s disease: a randomised, single-blind, multicentre trial. Lancet. 1999;354(9191):16651669.

    • Search Google Scholar
    • Export Citation
  • 3

    Eisenberg HM, Krishna V, Elias WJ, Cosgrove GR, Gandhi D, Aldrich CE, Fishman PS. MR-guided focused ultrasound pallidotomy for Parkinson’s disease: safety and feasibility. J Neurosurg.Published online November 27, 2020. doi: 10.3171/2020.6.JNS192773

    • Search Google Scholar
    • Export Citation
  • 4

    Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport. 1994;5(12):15331537.

    • Search Google Scholar
    • Export Citation
  • 5

    Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO. Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol. 2012;123(2):358368.

    • Search Google Scholar
    • Export Citation
  • 6

    Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord. 2006;21(suppl 14):S259S283.

    • Search Google Scholar
    • Export Citation
  • 7

    Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246254.

    • Search Google Scholar
    • Export Citation
  • 8

    Gross RE, Lombardi WJ, Lang AE, Duff J, Hutchison WD, Saint-Cyr JA, et al. Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease. Brain. 1999;122(3):405416.

    • Search Google Scholar
    • Export Citation
  • 9

    Lombardi WJ, Gross RE, Trepanier LL, Lang AE, Lozano AM, Saint-Cyr JA. Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson’s disease: support for the existence of cognitive circuits in the human pallidum. Brain. 2000;123(4):746758.

    • Search Google Scholar
    • Export Citation
  • 10

    Bejjani B, Damier P, Arnulf I, Bonnet AM, Vidailhet M, Dormont D, et al. Pallidal stimulation for Parkinson’s disease. Two targets? Neurology. 1997;49(6):15641569.

    • Search Google Scholar
    • Export Citation
  • 11

    Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage. 2009;47(suppl 2):T44T52.

    • Search Google Scholar
    • Export Citation
  • 12

    Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750757.

    • Search Google Scholar
    • Export Citation
  • 13

    Sammartino F, Krishna V, King NK, Lozano AM, Schwartz ML, Huang Y, Hodaie M. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):12171225.

    • Search Google Scholar
    • Export Citation
  • 14

    King NKK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, et al. Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg. 2017;126(5):16691675.

    • Search Google Scholar
    • Export Citation
  • 15

    Pollock H, Hutchings M, Weller RO, Zhang ET. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat. 1997;191(Pt 3):337346.

    • Search Google Scholar
    • Export Citation
  • 16

    Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology. 2009;252(1):165172.

    • Search Google Scholar
    • Export Citation
  • 17

    Zijlmans JC, Daniel SE, Hughes AJ, Révész T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord. 2004;19(6):630640.

    • Search Google Scholar
    • Export Citation
  • 18

    Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;20(1):91127.

    • Search Google Scholar
    • Export Citation
  • 19

    Veselý B, Antonini A, Rektor I. The contribution of white matter lesions to Parkinson’s disease motor and gait symptoms: a critical review of the literature. J Neural Transm (Vienna). 2016;123(3):241250.

    • Search Google Scholar
    • Export Citation
  • 20

    Rozanski VE, Vollmar C, Cunha JP, Tafula SM, Ahmadi SA, Patzig M, et al. Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage. 2014;84:435442.

    • Search Google Scholar
    • Export Citation
  • 21

    Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE Trans Med Imaging. 2010;29(9):16261635.

  • 22

    Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105124.

    • Search Google Scholar
    • Export Citation
  • 23

    Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage. 2013;80:125143.

    • Search Google Scholar
    • Export Citation
  • 24

    ExAblate transcranial MRgFUS of the globus pallidum for treatment of Parkinson’s disease. ClinicalTrials.gov Identifier: NCT02263885; 2020.Accessed August 13, 2021. https://clinicaltrials.gov/ct2/show/NCT02263885

    • Search Google Scholar
    • Export Citation
  • 25

    ExAblate pallidotomy for medically-refractory dyskinesia symptoms or motor fluctuations of advanced Parkinson’s disease. ClinicalTrials.gov Identifier: NCT03319485; 2020.Accessed August 13, 2021. https://clinicaltrials.gov/ct2/show/NCT03319485

    • Search Google Scholar
    • Export Citation
  • 26

    Uğurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage. 2013;80:80104.

    • Search Google Scholar
    • Export Citation
  • 27

    Pierpaoli C, Walker L, Irfanoglu MO, Barnett A, Basser P, Chang LC, et al. TORTOISE: an integrated software package for processing of diffusion MRI data. Paper presented at: 2010 Annual Meeting of the International Society of Magnetic Resonance in Medicine; May 1–7, 2010;Stockholm Sweden.Accessed August 13, 2021. https://cds.ismrm.org/protected/10MProceedings/PDFfiles/1597_6360.pdf

    • Search Google Scholar
    • Export Citation
  • 28

    Yeh FC, Tseng WYI. NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. 2011;58(1):9199.

    • Search Google Scholar
    • Export Citation
  • 29

    Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A. Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery. 2019;84(1):160168.

    • Search Google Scholar
    • Export Citation
  • 30

    Yeh FC, Vettel JM, Singh A, Poczos B, Grafton ST, Erickson KI, et al. Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLOS Comput Biol. 2016;12(11):e1005203.

    • Search Google Scholar
    • Export Citation
  • 31

    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927930.

  • 32

    Rolls ET, Joliot M, Tzourio-Mazoyer N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage. 2015;122:15.

    • Search Google Scholar
    • Export Citation
  • 33

    da Silva NM, Ahmadi SA, Tafula SN, Cunha JPS, Botzel K, Vollmar C, et al. A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS. Neuroimage. 2017;144(Pt A):8391.

    • Search Google Scholar
    • Export Citation
  • 34

    Ofori E, Pasternak O, Planetta PJ, Li H, Burciu RG, Snyder AF, et al. Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain. 2015;138(Pt 8):23222331.

    • Search Google Scholar
    • Export Citation
  • 35

    Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, et al. Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord. 2015;30(3):342349.

    • Search Google Scholar
    • Export Citation
  • 36

    Beukema P, Yeh FC, Verstynen T. In vivo characterization of the connectivity and subcomponents of the human globus pallidus. Neuroimage. 2015;120:382393.

    • Search Google Scholar
    • Export Citation
  • 37

    Fernandez-Miranda JC, Pathak S, Engh J, Jarbo K, Verstynen T, Yeh FC, et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery. 2012;71(2):430453.

    • Search Google Scholar
    • Export Citation
  • 38

    Baete SH, Cloos MA, Lin YC, Placantonakis DG, Shepherd T, Boada FE. Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles. Neuroimage. 2019;198:231241.

    • Search Google Scholar
    • Export Citation
  • 39

    Plantinga BR, Temel Y, Roebroeck A, Uludağ K, Ivanov D, Kuijf ML, Ter Haar Romenij BM. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures. Front Hum Neurosci. 2014;8:876.

    • Search Google Scholar
    • Export Citation
  • 40

    Kayahara T, Nakano K. Pallido-thalamo-motor cortical connections: an electron microscopic study in the macaque monkey. Brain Res. 1996;706(2):337342.

    • Search Google Scholar
    • Export Citation
  • 41

    Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol. 1994;345(2):185213.

    • Search Google Scholar
    • Export Citation
  • 42

    Leichnetz GR, Astruc J. The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol. 1977;54(1):104109.

    • Search Google Scholar
    • Export Citation
  • 43

    Middlebrooks EH, Tuna IS, Grewal SS, Almeida L, Heckman MG, Lesser ER, et al. Segmentation of the globus pallidus internus using probabilistic diffusion tractography for deep brain stimulation targeting in Parkinson disease. AJNR Am J Neuroradiol. 2018;39(6):11271134.

    • Search Google Scholar
    • Export Citation
  • 44

    Nair G, Evans A, Bear RE, Velakoulis D, Bittar RG. The anteromedial GPi as a new target for deep brain stimulation in obsessive compulsive disorder. J Clin Neurosci. 2014;21(5):815821.

    • Search Google Scholar
    • Export Citation
  • 45

    Patriat R, Niederer J, Kaplan J, Amundsen Huffmaster S, Petrucci M, Eberly L, et al. Morphological changes in the subthalamic nucleus of people with mild-to-moderate Parkinson’s disease: a 7T MRI study. Sci Rep. 2020;10(1):8785.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 437 437 286
Full Text Views 52 52 43
PDF Downloads 75 75 61
EPUB Downloads 0 0 0