Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR): rationale, design, and initial characterization of patient cohort

View More View Less
  • 1 Department of Neurological Surgery,
  • | 2 Mallinckrodt Institute of Radiology, and
  • | 3 Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri;
  • | 4 Departments of Neurological Surgery and
  • | 5 Radiology, Mayo Clinic, Rochester, Minnesota;
  • | 6 Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia;
  • | 7 Department of Neurological Surgery and
  • | 8 Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington;
  • | 9 Department of Neurosurgery, University of Southampton, University Hospital Southampton, United Kingdom;
  • | 10 Department of Neurological Surgery, University of Florida, Gainesville, Florida;
  • | 11 Department of Neurological Surgery, University of Pittsburgh, Pennsylvania;
  • | 12 Departments of Neurology and
  • | 13 Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa;
  • | 14 Department of Neurological Surgery, University of Illinois at Chicago, Illinois;
  • | 15 Department of Neurological Surgery, University of Groningen, University Medical Center Groningen, The Netherlands;
  • | 16 Department of Neurological Surgery and Radiology, University of Miami, Florida;
  • | 17 Department of Neurosurgery, Institute of Biomedical Biosciences, Tokushima University Graduate School, Tokushima, Japan;
  • | 18 Weill Institute for Neurosciences, Department of Neurosurgery, University of California, San Francisco, California;
  • | 19 Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Cranial dural arteriovenous fistulas (dAVFs) are rare lesions, hampering efforts to understand them and improve their care. To address this challenge, investigators with an established record of dAVF investigation formed an international, multicenter consortium aimed at better elucidating dAVF pathophysiology, imaging characteristics, natural history, and patient outcomes. This report describes the design of the Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) and includes characterization of the 1077-patient cohort.

METHODS

Potential collaborators with established interest in the field were identified via systematic review of the literature. To ensure uniformity of data collection, a quality control process was instituted. Data were retrospectively obtained.

RESULTS

CONDOR comprises 14 centers in the United States, the United Kingdom, the Netherlands, and Japan that have pooled their data from 1077 dAVF patients seen between 1990 and 2017. The cohort includes 359 patients (33%) with Borden type I dAVFs, 175 (16%) with Borden type II fistulas, and 529 (49%) with Borden type III fistulas. Overall, 852 patients (79%) presented with fistula-related symptoms: 427 (40%) presented with nonaggressive symptoms such as tinnitus or orbital phenomena, 258 (24%) presented with intracranial hemorrhage, and 167 (16%) presented with nonhemorrhagic neurological deficits. A smaller proportion (224 patients, 21%), whose dAVFs were discovered incidentally, were asymptomatic. Many patients (85%, 911/1077) underwent treatment via endovascular embolization (55%, 587/1077), surgery (10%, 103/1077), radiosurgery (3%, 36/1077), or multimodal therapy (17%, 184/1077). The overall angiographic cure rate was 83% (758/911 treated), and treatment-related permanent neurological morbidity was 2% (27/1467 total procedures). The median time from diagnosis to follow-up was 380 days (IQR 120–1038.5 days).

CONCLUSIONS

With more than 1000 patients, the CONDOR registry represents the largest registry of cranial dAVF patient data in the world. These unique, well-annotated data will enable multiple future analyses to be performed to better understand dAVFs and their management.

ABBREVIATIONS

CONDOR = Consortium for Dural Arteriovenous Fistula Outcomes Research; CVD = cortical venous drainage; dAVF = dural arteriovenous fistula; ICH = intracranial hemorrhage; NHND = nonhemorrhagic neurological deficit.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Newton TH, Cronqvist S. Involvement of dural arteries in intracranial arteriovenous malformations. Radiology. 1969;93(5):10711078.

  • 2

    Satomi J, Satoh K. Epidemiology and etiology of dural arteriovenous fistula. Article in Japanese. Brain Nerve. 2008;60(8):883886.

  • 3

    Al-Shahi R, Bhattacharya JJ, Currie DG, et al. Scottish Intracranial Vascular Malformation Study (SIVMS): evaluation of methods, ICD-10 coding, and potential sources of bias in a prospective, population-based cohort. Stroke. 2003;34(5):11561162.

    • Search Google Scholar
    • Export Citation
  • 4

    Kuwayama N. Epidemiologic survey of dural arteriovenous fistulas in Japan: clinical frequency and present status of treatment. Acta Neurochir Suppl. 2016;123:185-188.

    • Search Google Scholar
    • Export Citation
  • 5

    Piippo A, Niemelä M, van Popta J, et al. Characteristics and long-term outcome of 251 patients with dural arteriovenous fistulas in a defined population. J Neurosurg. 2013;118(5):923934.

    • Search Google Scholar
    • Export Citation
  • 6

    Reynolds MR, Lanzino G, Zipfel GJ. Intracranial dural arteriovenous fistulae. Stroke. 2017;48(5):14241431.

  • 7

    Awad IA, Little JR, Akarawi WP, Ahl J. Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg. 1990;72(6):839850.

    • Search Google Scholar
    • Export Citation
  • 8

    Cannizzaro D, Brinjikji W, Rammos S, et al. Changing clinical and therapeutic trends in tentorial dural arteriovenous fistulas: a systematic review. AJNR Am J Neuroradiol. 2015;36(10):19051911.

    • Search Google Scholar
    • Export Citation
  • 9

    Gross BA, Du R. The natural history of cerebral dural arteriovenous fistulae. Neurosurgery. 2012;71(3):594603.

  • 10

    Kobayashi A, Al-Shahi Salman R. Prognosis and treatment of intracranial dural arteriovenous fistulae: a systematic review and meta-analysis. Int J Stroke. 2014;9(6):670677.

    • Search Google Scholar
    • Export Citation
  • 11

    Lin YH, Lin HH, Liu HM, et al. Diagnostic performance of CT and MRI on the detection of symptomatic intracranial dural arteriovenous fistula: a meta-analysis with indirect comparison. Neuroradiology. 2016;58(8):753763.

    • Search Google Scholar
    • Export Citation
  • 12

    Borden JA, Wu JK, Shucart WA. A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg. 1995;82(2):166179.

    • Search Google Scholar
    • Export Citation
  • 13

    Cognard C, Gobin YP, Pierot L, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology. 1995;194(3):671680.

    • Search Google Scholar
    • Export Citation
  • 14

    Bulters DO, Mathad N, Culliford D, et al. The natural history of cranial dural arteriovenous fistulae with cortical venous reflux—the significance of venous ectasia. Neurosurgery. 2012;70(2):312319.

    • Search Google Scholar
    • Export Citation
  • 15

    Singh V, Smith WS, Lawton MT, et al. Risk factors for hemorrhagic presentation in patients with dural arteriovenous fistulae. Neurosurgery. 2008;62(3):628635.

    • Search Google Scholar
    • Export Citation
  • 16

    Djindjian R, Merland JJ. Super-Selective Arteriography of the External Carotid Artery. Springer-Verlag;1978.

  • 17

    Zipfel GJ, Shah MN, Refai D, et al. Cranial dural arteriovenous fistulas: modification of angiographic classification scales based on new natural history data. Neurosurg Focus. 2009;26(5):E14.

    • Search Google Scholar
    • Export Citation
  • 18

    Fussner LA, Harer KN, Poterucha TH. 51-year-old man with tinnitus. Mayo Clin Proc. 2013;88(6):636639.

  • 19

    Kohama M, Nishimura S, Mino M, et al. Anterior cranial fossa dural arteriovenous fistula with bilateral cortical drainers—case report. Neurol Med Chir (Tokyo). 2010;50(3):217220.

    • Search Google Scholar
    • Export Citation
  • 20

    Lantz ER, Lavine SD, Festa JR, et al. Acute confusional syndrome from a dural arteriovenous fistula. Neurosurgery. 2009;65(1):E208E209.

  • 21

    Mondel PK, Saraf R, Limaye US. Acute subarachnoid hemorrhage in posterior condylar canal dural arteriovenous fistula: imaging features with endovascular management. J Neurointerv Surg. 2015;7(7):e26.

    • Search Google Scholar
    • Export Citation
  • 22

    Shi ZS, Loh Y, Duckwiler GR, et al. Balloon-assisted transarterial embolization of intracranial dural arteriovenous fistulas. J Neurosurg. 2009;110(5):921928.

    • Search Google Scholar
    • Export Citation
  • 23

    Shimizu Y, Tsutsumi S, Yasumoto Y, Ito M. Carotid cavernous sinus fistula caused by dental implant-associated infection. Am J Otolaryngol. 2012;33(3):352355.

    • Search Google Scholar
    • Export Citation
  • 24

    Solarte CE, Levin AV, Armstrong D. Acute proptosis in a newborn infant: a presentation of infantile dural fistula. J AAPOS. 2010;14(1):8889.

    • Search Google Scholar
    • Export Citation
  • 25

    Tsutsumi S, Shimizu Y, Nonaka Y, et al. Arteriovenous fistula arising from the persistent primitive olfactory artery with dual supply from the bilateral anterior ethmoidal arteries. Neurol Med Chir (Tokyo). 2009;49(9):407409.

    • Search Google Scholar
    • Export Citation
  • 26

    Willems PW, Willinsky RA, Segev Y, Agid R. Aggressive intracranial dural arteriovenous fistula presenting with cerebrospinal fluid rhinorrhea: case report. Neurosurgery. 2009;65(6):E1208E1209.

    • Search Google Scholar
    • Export Citation
  • 27

    Yürekli VA, Orhan G, Gürkas E, Senol N. Bilateral ophthalmic-ethmoidal dural arteriovenous fistula presenting with intracranial hemorrhage: a rare entity. Neurol Sci. 2013;34(10):18511853.

    • Search Google Scholar
    • Export Citation
  • 28

    Cannizzaro D, Peschillo S, Cenzato M, et al. Endovascular and surgical approaches of ethmoidal dural fistulas: a multicenter experience and a literature review. Neurosurg Rev. 2018;41(2):391398.

    • Search Google Scholar
    • Export Citation
  • 29

    Daniels DJ, Vellimana AK, Zipfel GJ, Lanzino G. Intracranial hemorrhage from dural arteriovenous fistulas: clinical features and outcome. Neurosurg Focus. 2013;34(5):E15.

    • Search Google Scholar
    • Export Citation
  • 30

    Gross BA, Albuquerque FC, McDougall CG, et al. A multi-institutional analysis of the untreated course of cerebral dural arteriovenous fistulas. J Neurosurg. 2018;129(5):11141119.

    • Search Google Scholar
    • Export Citation
  • 31

    Hiramatsu M, Sugiu K, Hishikawa T, et al. Epidemiology of dural arteriovenous fistula in Japan: analysis of Japanese Registry of Neuroendovascular Therapy (JR-NET2). Neurol Med Chir (Tokyo). 2014;54(1):6371.

    • Search Google Scholar
    • Export Citation
  • 32

    Lamin S, Chew HS, Chavda S, et al. Embolization of intracranial dural arteriovenous fistulas using PHIL liquid embolic agent in 26 patients: a multicenter study. AJNR Am J Neuroradiol. 2017;38(1):127131.

    • Search Google Scholar
    • Export Citation
  • 33

    Meneghelli P, Pasqualin A, Lanterna LA, et al. Surgical treatment of anterior cranial fossa dural arterio-venous fistulas (DAVFs): a two-centre experience. Acta Neurochir (Wien). 2017;159(5):823830.

    • Search Google Scholar
    • Export Citation
  • 34

    LeLorier J, Grégoire G, Benhaddad A, et al. Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med. 1997;337(8):536542.

    • Search Google Scholar
    • Export Citation
  • 35

    Houser OW, Baker HL Jr, Rhoton AL Jr, Okazaki H. Intracranial dural arteriovenous malformations. Radiology. 1972;105(1):5564.

  • 36

    Satomi J, van Dijk JM, Terbrugge KG, et al. Benign cranial dural arteriovenous fistulas: outcome of conservative management based on the natural history of the lesion. J Neurosurg. 2002;97(4):767770.

    • Search Google Scholar
    • Export Citation
  • 37

    Shah MN, Botros JA, Pilgram TK, et al. Borden-Shucart Type I dural arteriovenous fistulas: clinical course including risk of conversion to higher-grade fistulas. J Neurosurg. 2012;117(3):539545.

    • Search Google Scholar
    • Export Citation
  • 38

    Collice M, D’Aliberti G, Talamonti G, et al. Surgical interruption of leptomeningeal drainage as treatment for intracranial dural arteriovenous fistulas without dural sinus drainage. J Neurosurg. 1996;84(5):810817.

    • Search Google Scholar
    • Export Citation
  • 39

    Thompson BG, Doppman JL, Oldfield EH. Treatment of cranial dural arteriovenous fistulae by interruption of leptomeningeal venous drainage. J Neurosurg. 1994;80(4):617623.

    • Search Google Scholar
    • Export Citation
  • 40

    van Dijk JM, TerBrugge KG, Willinsky RA, Wallace MC. Selective disconnection of cortical venous reflux as treatment for cranial dural arteriovenous fistulas. J Neurosurg. 2004;101(1):3135.

    • Search Google Scholar
    • Export Citation
  • 41

    Chen CJ, Lee CC, Ding D, et al. Stereotactic radiosurgery for intracranial dural arteriovenous fistulas: a systematic review. J Neurosurg. 2015;122(2):353362.

    • Search Google Scholar
    • Export Citation
  • 42

    Park KS, Kang DH, Park SH, Kim YS. The efficacy of gamma knife radiosurgery alone as a primary treatment for intracranial dural arteriovenous fistulas. Acta Neurochir (Wien). 2016;158(4):821828.

    • Search Google Scholar
    • Export Citation
  • 43

    Söderman M, Edner G, Ericson K, et al. Gamma knife surgery for dural arteriovenous shunts: 25 years of experience. J Neurosurg. 2006;104(6):867875.

    • Search Google Scholar
    • Export Citation
  • 44

    Abecassis IJ, Meyer RM, Levitt MR, et al. Recurrence after cure in cranial dural arteriovenous fistulas: a collaborative effort by the Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR). J Neurosurg. Published online September 10, 2021. doi:10.3171/2021.1.JNS202033

    • Search Google Scholar
    • Export Citation
  • 45

    Chen CJ, Buell TJ, Ding D, et al. Intervention for unruptured high-grade intracranial dural arteriovenous fistulas: a multicenter study. J Neurosurg. Published online September 10, 2021. doi:10.3171/2021.1.JNS202799

    • Search Google Scholar
    • Export Citation
  • 46

    Samaniego EA, Roa JA, Hayakawa M, et al. Dural arteriovenous fistulas without cortical venous drainage: presentation, treatment, and outcomes. J Neurosurg. Published online September 10, 2021. doi:10.3171/2021.1.JNS202825

    • Search Google Scholar
    • Export Citation
  • 47

    Abecassis IJ, Meyer RM, Levitt MR, et al. Assessing the rate, natural history, and treatment trends of intracranial aneurysms in patients with intracranial dural arteriovenous fistulas: a Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) investigation. J Neurosurg. Published online September 10, 2021.. doi:10.3171/2021.1.JNS202861

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 394 394 74
Full Text Views 114 114 20
PDF Downloads 124 124 25
EPUB Downloads 0 0 0