MRI-guided stereotactic laser corpus callosotomy for epilepsy: distinct methods and outcomes

View More View Less
  • 1 Emory University School of Medicine; Departments of
  • | 2 Neurology,
  • | 3 Neurosurgery, and
  • | 4 Radiology, Emory University School of Medicine, Atlanta, Georgia;
  • | 5 Department of Neurosurgery, Texas Children’s Hospital, Houston, Texas; and
  • | 6 Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Several small series have described stereotactic MRI-guided laser interstitial thermal therapy for partial callosotomy of astatic and generalized tonic-clonic (GTC) seizures, especially in association with Lennox-Gastaut syndrome. Larger case series and comparison of distinct stereotactic methods for stereotactic laser corpus callosotomy (SLCC), however, are currently lacking. The objective of this study was to report seizure outcomes in a series of adult patients with epilepsy following anterior, posterior, and complete SLCC procedures and to compare the results achieved with a frameless stereotactic surgical robot versus direct MRI guidance frames.

METHODS

The authors retrospectively reviewed sequential adult epilepsy surgery patients who underwent SLCC procedures at a single institution. They describe workflows, stereotactic errors, percentage disconnection, hospitalization durations, adverse events, and seizure outcomes after performing anterior, posterior, and complete SLCC procedures using a frameless stereotactic surgical robot versus direct MRI guidance platforms.

RESULTS

Thirteen patients underwent 15 SLCC procedures. The median age at surgery was 29 years (range 20–49 years), the median duration of epilepsy was 21 years (range 9–48 years), and median postablation follow-up was 20 months (range 4–44 months). Ten patients underwent anterior SLCC with a median 73% (range 33%–80%) midsagittal length of callosum acutely ablated. Following anterior SLCC, 6 of 10 patients achieved meaningful (> 50%) reduction of target seizures. Four patients underwent posterior (completion) SLCC following prior anterior callosotomy, and 1 patient underwent complete SLCC as a single procedure; 3 of these 5 patients experienced meaningful reduction of target seizures. Overall, 8 of 10 patients in whom astatic seizures were targeted and treated by anterior and/or posterior SLCC experienced meaningful improvement. SLCC procedures with direct MRI guidance (n = 7) versus a frameless surgical robot (n = 8) yielded median radial accuracies of 1.1 mm (range 0.2–2.0 mm) versus 2.4 mm (range 0.6–6.1 mm; p = 0.0011). The most serious adverse event was a clinically significant intraparenchymal hemorrhage in a patient who underwent the robotic technique.

CONCLUSIONS

This is the largest reported series of SLCC for epilepsy to date. SLCC provides seizure outcomes comparable to open surgery outcomes reported in the literature. Direct MRI guidance is more accurate, which has the potential to reduce the risks of SLCC. Methodological advancements and larger studies are needed.

ABBREVIATIONS

DBS = deep brain stimulation; GTC = generalized tonic-clonic; LGS = Lennox-Gastaut syndrome; LOS = length of stay; MRg-LITT = MRI-guided laser interstitial thermal therapy; ROSA = Robotic Stereotactic Assistant; SGE = symptomatic generalized epilepsy; SLCC = stereotactic laser corpus callosotomy; T2IR = T2 inversion recovery; VNS = vagus nerve stimulation; VP = ventriculoperitoneal.

Supplementary Materials

    • Supplemental Figure (PDF 357 KB)

Artist’s illustration of the classic mulberry appearance of a cavernoma. This illustration represents the Seven Cavernomas series by Dr. Michael Lawton, a collection of articles defining the tenets and techniques for the treatment of cavernous malformations, a taxonomy for classifying these lesions, and the nuances of their surgical approaches. Artist: Peter M. Lawrence. Used with permission from Barrow Neurological Institute, Phoenix, Arizona. See the article by Garcia et al. (pp 671–682).

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Jon T. Willie: Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO. jontwillie@wustl.edu.

INCLUDE WHEN CITING Published online January 22, 2021; DOI: 10.3171/2020.7.JNS20498.

Disclosures Dr. Curry reports being a consultant to Medtronic, Inc. Dr. Gross reports being a consultant to Medtronic, and receiving support of non–study-related clinical or research effort from Medtronic. Dr. Willie reports being a consultant to Medtronic, ClearPoint Neuro, NeuroPace, AIMM Therapeutics, and NICO Medical, and receiving support of non–study-related clinical or research effort from Medtronic, NeuroPace, and NICO Medical.

  • 1

    Mathews MS , Linskey ME , Binder DK . William P. van Wagenen and the first corpus callosotomies for epilepsy . J Neurosurg . 2008 ;108 (3 ):608 613 .

    • Search Google Scholar
    • Export Citation
  • 2

    Van Wagenen W , Herren RY . Surgical division of commissural pathways in the corpus callosum: relation to spread of an epileptic attack . Arch NeurPsych . 1940 ;44 (4 ):740 759 .

    • Search Google Scholar
    • Export Citation
  • 3

    Huck FR , Radvany J , Avila JO , et al. Anterior callosotomy in epileptics with multiform seizures and bilateral synchronous spike and wave EEG pattern . Acta Neurochir Suppl (Wien) . 1980 ;30 :127 135 .

    • Search Google Scholar
    • Export Citation
  • 4

    Spencer SS , Spencer DD , Sass K , et al. Anterior, total, and two-stage corpus callosum section: differential and incremental seizure responses . Epilepsia . 1993 ;34 (3 ):561 567 .

    • Search Google Scholar
    • Export Citation
  • 5

    Lancman G , Virk M , Shao H , et al. Vagus nerve stimulation vs. corpus callosotomy in the treatment of Lennox-Gastaut syndrome: a meta-analysis . Seizure . 2013 ;22 (1 ):3 8 .

    • Search Google Scholar
    • Export Citation
  • 6

    Graham D , Tisdall MM , Gill D . Corpus callosotomy outcomes in pediatric patients: a systematic review . Epilepsia . 2016 ;57 (7 ):1053 1068 .

    • Search Google Scholar
    • Export Citation
  • 7

    Pinard JM , Delalande O , Chiron C , et al. Callosotomy for epilepsy after West syndrome . Epilepsia . 1999 ;40 (12 ):1727 1734 .

  • 8

    Rahimi SY , Park YD , Witcher MR , et al. Corpus callosotomy for treatment of pediatric epilepsy in the modern era . Pediatr Neurosurg . 2007 ;43 (3 ):202 208 .

    • Search Google Scholar
    • Export Citation
  • 9

    Shimizu H. Our experience with pediatric epilepsy surgery focusing on corpus callosotomy and hemispherotomy . Epilepsia . 2005 ;46 (suppl 1 ):30 31 .

    • Search Google Scholar
    • Export Citation
  • 10

    Turanli G , Yalnizoğlu D , Genç-Açikgöz D , et al. Outcome and long term follow-up after corpus callosotomy in childhood onset intractable epilepsy . Childs Nerv Syst . 2006 ;22 (10 ):1322 1327 .

    • Search Google Scholar
    • Export Citation
  • 11

    Wilson DH , Reeves A , Gazzaniga M . Division of the corpus callosum for uncontrollable epilepsy . Neurology . 1978 ;28 (7 ):649 653 .

    • Search Google Scholar
    • Export Citation
  • 12

    Jalilian L , Limbrick DD , Steger-May K , et al. Complete versus anterior two-thirds corpus callosotomy in children: analysis of outcome . J Neurosurg Pediatr . 2010 ;6 (3 ):257 266 .

    • Search Google Scholar
    • Export Citation
  • 13

    Kasasbeh AS , Smyth MD , Steger-May K , et al. Outcomes after anterior or complete corpus callosotomy in children . Neurosurgery . 2014 ;74 (1 ):17 28 .

    • Search Google Scholar
    • Export Citation
  • 14

    Stigsdotter-Broman L , Olsson I , Flink R , et al. Long-term follow-up after callosotomy—a prospective, population based, observational study . Epilepsia . 2014 ;55 (2 ):316 321 .

    • Search Google Scholar
    • Export Citation
  • 15

    Ellis JA , Mejia Munne JC , Wang SH , et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias . J Clin Neurosci . 2016 ;31 :224 228 .

    • Search Google Scholar
    • Export Citation
  • 16

    McCracken DJ , Willie JT , Fernald BA , et al. Magnetic resonance thermometry-guided stereotactic laser ablation of cavernous malformations in drug-resistant epilepsy: imaging and clinical results . Oper Neurosurg (Hagerstown) . 2016 ;12 (1 ):39 48 .

    • Search Google Scholar
    • Export Citation
  • 17

    Thompson SA , Kalamangalam GP , Tandon N . Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia . Seizure . 2016 ;41 :211 216 .

    • Search Google Scholar
    • Export Citation
  • 18

    Willie JT , Laxpati NG , Drane DL , et al. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy . Neurosurgery . 2014 ;74 (6 ):569 585 .

    • Search Google Scholar
    • Export Citation
  • 19

    Willie JT , Malcolm JG , Stern MA , et al. Safety and effectiveness of stereotactic laser ablation for epileptogenic cerebral cavernous malformations . Epilepsia . 2019 ;60 (2 ):220 232 .

    • Search Google Scholar
    • Export Citation
  • 20

    Boerwinkle VL , Foldes ST , Torrisi SJ , et al. Subcentimeter epilepsy surgery targets by resting state functional magnetic resonance imaging can improve outcomes in hypothalamic hamartoma . Epilepsia . 2018 ;59 (12 ):2284 2295 .

    • Search Google Scholar
    • Export Citation
  • 21

    Ball T , Sharma M , White AC , Neimat JS . Anterior corpus callosotomy using laser interstitial thermal therapy for refractory epilepsy . Stereotact Funct Neurosurg . 2018 ;96 (6 ):406 411 .

    • Search Google Scholar
    • Export Citation
  • 22

    Ho AL , Miller KJ , Cartmell S , et al. Stereotactic laser ablation of the splenium for intractable epilepsy . Epilepsy Behav Case Rep . 2016 ;5 :23 26 .

    • Search Google Scholar
    • Export Citation
  • 23

    Huang Y , Yecies D , Bruckert L , et al. Stereotactic laser ablation for completion corpus callosotomy . J Neurosurg Pediatr . 2019 ;24 (4 ):433 441 .

    • Search Google Scholar
    • Export Citation
  • 24

    Karsy M , Patel DM , Halvorson K , et al. Anterior two-thirds corpus callosotomy via stereotactic laser ablation . Neurosurg Focus . 2018 ;44 (VideoSuppl2 ):V2 .

    • Search Google Scholar
    • Export Citation
  • 25

    Lehner KR , Yeagle EM , Argyelan M , et al. Validation of corpus callosotomy after laser interstitial thermal therapy: a multimodal approach . J Neurosurg . 2019 ;131 (4 ):1095 1105 .

    • Search Google Scholar
    • Export Citation
  • 26

    Palma AE , Wicks RT , Popli G , Couture DE . Corpus callosotomy via laser interstitial thermal therapy: a case series . J Neurosurg Pediatr . 2018 ;23 (3 ):303 307 .

    • Search Google Scholar
    • Export Citation
  • 27

    Tao JX , Issa NP , Wu S , et al. Interstitial stereotactic laser anterior corpus callosotomy: a report of 2 cases with operative technique and effectiveness . Neurosurgery . 2019 ;85 (3 ):E569 E574 .

    • Search Google Scholar
    • Export Citation
  • 28

    Tao JX , Satzer D , Issa NP , et al. Stereotactic laser anterior corpus callosotomy for Lennox-Gastaut syndrome . Epilepsia . 2020 ;61 (6 ):1190 1200 .

    • Search Google Scholar
    • Export Citation
  • 29

    Jethwa PR , Barrese JC , Gowda A , et al. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience . Neurosurgery . 2012 ;71 (1 )(Suppl Operative ):133 145 .

    • Search Google Scholar
    • Export Citation
  • 30

    Burchiel KJ , McCartney S , Lee A , Raslan AM . Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording . J Neurosurg . 2013 ;119 (2 ):301 306 .

    • Search Google Scholar
    • Export Citation
  • 31

    Malmgren K , Rydenhag B , Hallböök T . Reappraisal of corpus callosotomy . Curr Opin Neurol . 2015 ;28 (2 ):175 181 .

  • 32

    Bower RS , Wirrell E , Nwojo M , et al. Seizure outcomes after corpus callosotomy for drop attacks . Neurosurgery . 2013 ;73 (6 ):993 1000 .

    • Search Google Scholar
    • Export Citation
  • 33

    Cipolloni PB , Pandya DN . Topography and trajectories of commissural fibers of the superior temporal region in the rhesus monkey . Exp Brain Res . 1985 ;57 (2 ):381 389 .

    • Search Google Scholar
    • Export Citation
  • 34

    Hofer S , Frahm J . Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging . Neuroimage . 2006 ;32 (3 ):989 994 .

    • Search Google Scholar
    • Export Citation
  • 35

    Zarei M , Johansen-Berg H , Smith S , et al. Functional anatomy of interhemispheric cortical connections in the human brain . J Anat . 2006 ;209 (3 ):311 320 .

    • Search Google Scholar
    • Export Citation
  • 36

    Gazzaniga MS , Risse GL , Springer SP , et al. Psychologic and neurologic consequences of partial and complete cerebral commissurotomy . Neurology . 1975 ;25 (1 ):10 15 .

    • Search Google Scholar
    • Export Citation
  • 37

    Gordon HW , Bogen JE , Sperry RW . Absence of deconnexion syndrome in two patients with partial section of the neocommissures . Brain . 1971 ;94 (2 ):327 336 .

    • Search Google Scholar
    • Export Citation
  • 38

    Risse GL , Gates J , Lund G , et al. Interhemispheric transfer in patients with incomplete section of the corpus callosum. Anatomic verification with magnetic resonance imaging . Arch Neurol . 1989 ;46 (4 ):437 443 .

    • Search Google Scholar
    • Export Citation
  • 39

    Oguni H , Olivier A , Andermann F , Comair J . Anterior callosotomy in the treatment of medically intractable epilepsies: a study of 43 patients with a mean follow-up of 39 months . Ann Neurol . 1991 ;30 (3 ):357 364 .

    • Search Google Scholar
    • Export Citation
  • 40

    Rathore C , Abraham M , Rao RM , et al. Outcome after corpus callosotomy in children with injurious drop attacks and severe mental retardation . Brain Dev . 2007 ;29 (9 ):577 585 .

    • Search Google Scholar
    • Export Citation
  • 41

    Reutens DC , Bye AM , Hopkins IJ , et al. Corpus callosotomy for intractable epilepsy: seizure outcome and prognostic factors . Epilepsia . 1993 ;34 (5 ):904 909 .

    • Search Google Scholar
    • Export Citation
  • 42

    Sunaga S , Shimizu H , Sugano H . Long-term follow-up of seizure outcomes after corpus callosotomy . Seizure . 2009 ;18 (2 ):124 128 .

    • Search Google Scholar
    • Export Citation
  • 43

    Brandmeir NJ , Savaliya S , Rohatgi P , Sather M . The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques . J Robot Surg . 2018 ;12 (1 ):157 163 .

    • Search Google Scholar
    • Export Citation
  • 44

    Vakharia VN , Sparks R , Li K , et al. Automated trajectory planning for laser interstitial thermal therapy in mesial temporal lobe epilepsy . Epilepsia . 2018 ;59 (4 ):814 824 .

    • Search Google Scholar
    • Export Citation
  • 45

    Vakharia VN , Sparks RE , Vos SB , et al. Computer-assisted planning for minimally invasive anterior two-thirds laser corpus callosotomy: a feasibility study with probabilistic tractography validation . Neuroimage Clin . 2020 ;25 :102174 .

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 54 54 54
Full Text Views 51 51 51
PDF Downloads 76 76 76
EPUB Downloads 0 0 0