Cerebral blood flow alterations in progressive communicating hydrocephalus: transcranial Doppler ultrasonography assessment in an experimental model

View More View Less
  • 1 Departments of Neurosurgery, Neurology, Pathology, and Physiology, Osmangazi University, Eskisehir, Turkey
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object. In many cases communicating hydrocephalus is the result of impairments in cerebrospinal fluid absorption in the arachnoid villi at the cranial convexity. Reported methods of creating experimental hydrocephalus have not sought to produce an arachnoidal adhesion in the cranial convexity. In this study the authors investigate alterations in cerebral blood flow (CBF) in experimental communicating hydrocephalus induced by the injection of kaolin into the subarachnoid space at the convexity in neonatal rats.

Methods. In neonatal rats, kaolin was injected into the subarachnoid space at the cranial convexity. Assessment of CBF alterations was performed using transcranial Doppler ultrasonography preinjection and at 10 days, 4 weeks, and 8 weeks postinjection. Light microscopy examination was also performed at 4 weeks and 8 weeks postinjection.

Conspicuous lateral ventricle enlargements of different dimensions were observed in kaolin-injected rats at 4 to 8 weeks postinjection. The third and fourth ventricles were dilated to a lesser extent. Resistance to CBF and increased mean CBF velocity were apparent 8 weeks after kaolin injection. Further, destruction and even loss of ependymal layers were more prominent at the chronic stage.

Conclusions. The present model may be considered a progressive communicating hydrocephalus because of marked changes in blood flow dynamics and destruction of the ependymal layer at the chronic stage.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address reprint requests to: T. Erhan Cosan, M.D., Yenikent 32-B Blok, Daire 11, 26050, Eskisehir, Turkey. email: ecosan@ogu.edu.tr.
  • 1.

    Bering EA Jr, & Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:10501063, 1963 Bering EA Jr, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063, 1963

    • Search Google Scholar
    • Export Citation
  • 2.

    Braun KP, , van Eijsden P, & Vandertop WP, et al: Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. J Neurosurg 91:660668, 1999 Braun KP, van Eijsden P, Vandertop WP, et al: Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. J Neurosurg 91:660–668, 1999

    • Search Google Scholar
    • Export Citation
  • 3.

    Byrd SE, & Seibert JJ: Transcranial Doppler imaging in pediatric abnormalities in older children. Neuroimaging Clin North Am 9:1740, 1999 Byrd SE, Seibert JJ: Transcranial Doppler imaging in pediatric abnormalities in older children. Neuroimaging Clin North Am 9:17–40, 1999

    • Search Google Scholar
    • Export Citation
  • 4.

    Conner ES, , Foley L, & Black PM: Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg 61:322327, 1984 Conner ES, Foley L, Black PM: Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg 61:322–327, 1984

    • Search Google Scholar
    • Export Citation
  • 5.

    Czosnyka M, , Richards H, & Kirkpatrick P, et al: Assessment of cerebral autoregulation with ultrasound and Doppler wave forms—an experimental study in anesthetized rabbits. Neurosurgery 35:287293, 1994 Czosnyka M, Richards H, Kirkpatrick P, et al: Assessment of cerebral autoregulation with ultrasound and Doppler wave forms—an experimental study in anesthetized rabbits. Neurosurgery 35:287–293, 1994

    • Search Google Scholar
    • Export Citation
  • 6.

    Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573585, 1993 Del Bigio MR: Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585, 1993

    • Search Google Scholar
    • Export Citation
  • 7.

    Fischer AQ, & Livingstone JN II: Transcranial Doppler and realtime cranial sonography in neonatal hydrocephalus. J Child Neurol 4:6469, 1989 Fischer AQ, Livingstone JN II: Transcranial Doppler and realtime cranial sonography in neonatal hydrocephalus. J Child Neurol 4:64–69, 1989

    • Search Google Scholar
    • Export Citation
  • 8.

    Gonzalez-Darder J, , Barbera J, & Cerda-Nicolas M, et al: Sequential morphological and functional changes in kaolin-induced hydrocephalus. J Neurosurg 61:918924, 1984 Gonzalez-Darder J, Barbera J, Cerda-Nicolas M, et al: Sequential morphological and functional changes in kaolin-induced hydrocephalus. J Neurosurg 61:918–924, 1984

    • Search Google Scholar
    • Export Citation
  • 9.

    Gonzalez-Darder JM, & Barcia-Salorio JL: Pulse amplitude and volume-pressure relationship in experimental hydrocephalus. Acta Neurochir 97:166170, 1989 Gonzalez-Darder JM, Barcia-Salorio JL: Pulse amplitude and volume-pressure relationship in experimental hydrocephalus. Acta Neurochir 97:166–170, 1989

    • Search Google Scholar
    • Export Citation
  • 10.

    Grossman SA, & Krabak MJ: Leptomeningeal carcinomatosis. Cancer Treat Rev 25:103119, 1999 Grossman SA, Krabak MJ: Leptomeningeal carcinomatosis. Cancer Treat Rev 25:103–119, 1999

    • Search Google Scholar
    • Export Citation
  • 11.

    Heckmann JG, , Hilz MJ, & Hagler H, et al: Transcranial Doppler sonography during acute 80 degrees head-down tilt (HDT) for the assessment of cerebral autoregulation in humans. Neurol Res 21:457462, 1999 Heckmann JG, Hilz MJ, Hagler H, et al: Transcranial Doppler sonography during acute 80 degrees head-down tilt (HDT) for the assessment of cerebral autoregulation in humans. Neurol Res 21:457–462, 1999

    • Search Google Scholar
    • Export Citation
  • 12.

    Larsen FS, , Olsen KS, & Hansen BA, et al: Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke 25:19851988, 1994 Larsen FS, Olsen KS, Hansen BA, et al: Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke 25:1985–1988, 1994

    • Search Google Scholar
    • Export Citation
  • 13.

    Lee EJ, , Hung YC, & Chang CH, et al: Cerebral blood flow velocity and vasomotor reactivity before and after shunting surgery in patients with normal pressure hydrocephalus. Acta Neurochir 140:599605, 1998 Lee EJ, Hung YC, Chang CH, et al: Cerebral blood flow velocity and vasomotor reactivity before and after shunting surgery in patients with normal pressure hydrocephalus. Acta Neurochir 140:599–605, 1998

    • Search Google Scholar
    • Export Citation
  • 14.

    Matsumoto S, , Hirayama A, & Yamasaki S, et al: Comparative study of various models of experimental hydrocephalus. Childs Brain 1:236242, 1975 Matsumoto S, Hirayama A, Yamasaki S, et al: Comparative study of various models of experimental hydrocephalus. Childs Brain 1:236–242, 1975

    • Search Google Scholar
    • Export Citation
  • 15.

    Matsumoto T, , Nagai H, & Fukushima T, et al: Analysis of intracranial pressure pulse wave in experimental hydrocephalus. Childs Nerv Syst 10:9195, 1994 Matsumoto T, Nagai H, Fukushima T, et al: Analysis of intracranial pressure pulse wave in experimental hydrocephalus. Childs Nerv Syst 10:91–95, 1994

    • Search Google Scholar
    • Export Citation
  • 16.

    Matsumoto T, , Nagai H, & Kasuga Y, et al: Changes in intracranial pressure (ICP) pulse wave following hydrocephalus. Acta Neurochir 82:5056, 1986 Matsumoto T, Nagai H, Kasuga Y, et al: Changes in intracranial pressure (ICP) pulse wave following hydrocephalus. Acta Neurochir 82:50–56, 1986

    • Search Google Scholar
    • Export Citation
  • 17.

    McAllister JP II, , Maugans TA, & Shah MV, et al: Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776783, 1985 McAllister JP II, Maugans TA, Shah MV, et al: Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63:776–783, 1985

    • Search Google Scholar
    • Export Citation
  • 18.

    McQuire JC, , Sutcliffe JC, & Coats TJ: Early changes in middle cerebral artery blood flow velocity after head injury. J Neurosurg 89:526532, 1998 McQuire JC, Sutcliffe JC, Coats TJ: Early changes in middle cerebral artery blood flow velocity after head injury. J Neurosurg 89:526–532, 1998

    • Search Google Scholar
    • Export Citation
  • 19.

    Milhorat TH: Hydrocephalus: pathophysiology and clinical features, in Wilkins RH, & Rengachary SS (eds): Neurosurgery, ed 2. New York: McGraw-Hill, 1996, Vol 3, pp 36253631 Milhorat TH: Hydrocephalus: pathophysiology and clinical features, in Wilkins RH, Rengachary SS (eds): Neurosurgery, ed 2. New York: McGraw-Hill, 1996, Vol 3, pp 3625–3631

    • Search Google Scholar
    • Export Citation
  • 20.

    Mise B, , Klarica M, & Seiwerth S, et al: Experimental hydrocephalus and hydromyelia: a new insight in mechanism of their development. Acta Neurochir 138:862869, 1996 Mise B, Klarica M, Seiwerth S, et al: Experimental hydrocephalus and hydromyelia: a new insight in mechanism of their development. Acta Neurochir 138:862–869, 1996

    • Search Google Scholar
    • Export Citation
  • 21.

    Nakada J, , Oka N, & Nagahori T, et al: Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir 114:4350, 1992 Nakada J, Oka N, Nagahori T, et al: Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir 114:43–50, 1992

    • Search Google Scholar
    • Export Citation
  • 22.

    Nyberg-Hansen R, , Torvik A, & Bhatia R: On the pathology of experimental hydrocephalus. Brain Res 95:343350, 1975 Nyberg-Hansen R, Torvik A, Bhatia R: On the pathology of experimental hydrocephalus. Brain Res 95:343–350, 1975

    • Search Google Scholar
    • Export Citation
  • 23.

    Olivero WC, & Asner N: Occlusion of the sagittal sinus in craniectomized rabbits. Childs Nerv Syst 8:307309, 1992 Olivero WC, Asner N: Occlusion of the sagittal sinus in craniectomized rabbits. Childs Nerv Syst 8:307–309, 1992

    • Search Google Scholar
    • Export Citation
  • 24.

    Richards HK, , Czosnyka M, & Whitehouse H, et al: Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Acta Neurochir Suppl 71:229232, 1998 Richards HK, Czosnyka M, Whitehouse H, et al: Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Acta Neurochir Suppl 71:229–232, 1998

    • Search Google Scholar
    • Export Citation
  • 25.

    Seibert JJ, , McCowan TC, & Chadduck WM, et al: Duplex pulsed Doppler US versus intracranial pressure in the neonate: clinical and experimental studies. Radiology 171:155159, 1989 Seibert JJ, McCowan TC, Chadduck WM, et al: Duplex pulsed Doppler US versus intracranial pressure in the neonate: clinical and experimental studies. Radiology 171:155–159, 1989

    • Search Google Scholar
    • Export Citation
  • 26.

    Shapiro K, , Takei F, & Fried A, et al: Experimental feline hydrocephalus. The role of biomechanical changes in ventricular enlargement in cats. J Neurosurg 63:8287, 1985 Shapiro K, Takei F, Fried A, et al: Experimental feline hydrocephalus. The role of biomechanical changes in ventricular enlargement in cats. J Neurosurg 63:82–87, 1985

    • Search Google Scholar
    • Export Citation
  • 27.

    Taormina MA, & Nichols FT: Use of transcranial Doppler sonography to evaluate patients with cerebrovascular disease. Neurosurg Clin North Am 7:589603, 1996 Taormina MA, Nichols FT: Use of transcranial Doppler sonography to evaluate patients with cerebrovascular disease. Neurosurg Clin North Am 7:589–603, 1996

    • Search Google Scholar
    • Export Citation
  • 28.

    Ungersböck K, , Heimann A, & Kempiski O: Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke 24:563570, 1993 Ungersböck K, Heimann A, Kempiski O: Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke 24:563–570, 1993

    • Search Google Scholar
    • Export Citation
  • 29.

    Weaver JP, & Fisher M: Subarachnoid hemorrhage: an update of pathogenesis, diagnosis and management. J Neurol Sci 125:119131, 1994 Weaver JP, Fisher M: Subarachnoid hemorrhage: an update of pathogenesis, diagnosis and management. J Neurol Sci 125:119–131, 1994

    • Search Google Scholar
    • Export Citation
  • 30.

    Williams MA, & Razumovsky AY: Cerebral fluid circulation, cerebral edema, and intracranial pressure. Curr Opin Neurol 6:847853, 1993 Williams MA, Razumovsky AY: Cerebral fluid circulation, cerebral edema, and intracranial pressure. Curr Opin Neurol 6:847–853, 1993

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 266 92 27
Full Text Views 141 5 2
PDF Downloads 120 5 4
EPUB Downloads 0 0 0