Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger

View More View Less
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object. Functional magnetic resonance (fMR) imaging was used to determine patterns of cerebral blood flow changes in the somatosensory cortex that result from median nerve stimulation (MNS).

Methods. Ten healthy volunteers underwent stimulation of the right median nerve at frequencies of 5.1 Hz (five volunteers) and 50 Hz (five volunteers). The left median nerve was stimulated at frequencies of 5.1 Hz (two volunteers) and 50 Hz (five volunteers). Tactile stimulation (with a soft brush) of the right index finger was also applied (three volunteers). Functional MR imaging data were transformed into Talairach space coordinates and averaged by group. Results showed significant activation (p < 0.001) in the following regions: primary sensorimotor cortex (SMI), secondary somatosensory cortex (SII), parietal operculum, insula, frontal cortex, supplementary motor area, and posterior parietal cortices (Brodmann's Areas 7 and 40). Further analysis revealed no statistically significant difference (p > 0.05) between volumes of cortical activation in the SMI or SII resulting from electrical stimuli at 5.1 Hz and 50 Hz. There existed no significant differences (p > 0.05) in cortical activity in either the SMI or SII resulting from either left- or right-sided MNS. With the exception of the frontal cortex, areas of cortical activity in response to tactile stimulation were anatomically identical to those regions activated by electrical stimulation. In the SMI and SII, activation resulting from tactile stimulation was not significantly different (p > 0.05) from that resulting from electrical stimulation.

Conclusions. Electrical stimulation of the median nerve is a reproducible and effective means of activating multiple somatosensory cortical areas, and fMR imaging can be used to investigate the complex network that exists between these areas.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1.

    Allison T, , McCarthy G, & Wood CC, et al: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:24652503, 1991 Allison T, McCarthy G, Wood CC, et al: Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503, 1991

    • Search Google Scholar
    • Export Citation
  • 2.

    Bittar RG, , Ptito A, & Reutens DC: Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study. J Neurosurg 92:4551, 2000 Bittar RG, Ptito A, Reutens DC: Somatosensory representation in patients who have undergone hemispherectomy: a functional magnetic resonance imaging study. J Neurosurg 92:45–51, 2000

    • Search Google Scholar
    • Export Citation
  • 3.

    Burton H, , Videen TO, & Raichle ME: Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297308, 1993 Burton H, Videen TO, Raichle ME: Tactile-vibration-activated foci in insular and parietal-opercular cortex studied with positron emission tomography: mapping the second somatosensory area in humans. Somatosens Mot Res 10:297–308, 1993

    • Search Google Scholar
    • Export Citation
  • 4.

    Carstens E, & Trevino DL: Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat's spinal cord. J Comp Neurol 182:167184, 1978 Carstens E, Trevino DL: Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat's spinal cord. J Comp Neurol 182:167–184, 1978

    • Search Google Scholar
    • Export Citation
  • 5.

    Davis KD, , Kwan CL, & Crawley AP, et al: Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:15331546, 1998 Davis KD, Kwan CL, Crawley AP, et al: Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546, 1998

    • Search Google Scholar
    • Export Citation
  • 6.

    Davis KD, , Wood ML, & Crawley AP, et al: fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7:321325, 1995 Davis KD, Wood ML, Crawley AP, et al: fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7:321–325, 1995

    • Search Google Scholar
    • Export Citation
  • 7.

    Duffy FH, & Burchfiel JL: Somatosensory system: organizational hierarchy from single units in monkey area 5. Science 172:273275, 1971 Duffy FH, Burchfiel JL: Somatosensory system: organizational hierarchy from single units in monkey area 5. Science 172:273–275, 1971

    • Search Google Scholar
    • Export Citation
  • 8.

    Fabri M, , Polonara G, & Quattrini A, et al: Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 11:39833994, 1999 Fabri M, Polonara G, Quattrini A, et al: Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 11:3983–3994, 1999

    • Search Google Scholar
    • Export Citation
  • 9.

    Fandino J, , Kollias SS, & Wieser HG, et al: Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238250, 1999 Fandino J, Kollias SS, Wieser HG, et al: Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250, 1999

    • Search Google Scholar
    • Export Citation
  • 10.

    Forss N, , Hietanen M, & Salonen O, et al: Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 122:18891899, 1999 Forss N, Hietanen M, Salonen O, et al: Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 122:1889–1899, 1999

    • Search Google Scholar
    • Export Citation
  • 11.

    Forss N, , Salmelin R, & Hari R: Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalogr Clin Neurophysiol 92:510517, 1994 Forss N, Salmelin R, Hari R: Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalogr Clin Neurophysiol 92:510–517, 1994

    • Search Google Scholar
    • Export Citation
  • 12.

    Fox PT, , Burton H, & Raichle ME: Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:3443, 1987 Fox PT, Burton H, Raichle ME: Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43, 1987

    • Search Google Scholar
    • Export Citation
  • 13.

    Gandevia SC, , Burke D, & McKeon BB: Convergence in the somatosensory pathway between cutaneous afferents from the index and middle fingers in man. Exp Brain Res 50:415425, 1983 Gandevia SC, Burke D, McKeon BB: Convergence in the somatosensory pathway between cutaneous afferents from the index and middle fingers in man. Exp Brain Res 50:415–425, 1983

    • Search Google Scholar
    • Export Citation
  • 14.

    Gelnar PA, , Krauss BR, & Sheehe PR, et al: A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10:460482, 1999 Gelnar PA, Krauss BR, Sheehe PR, et al: A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10:460–482, 1999

    • Search Google Scholar
    • Export Citation
  • 15.

    Graveline C, , Hwang P, & Bone G, et al: Evaluation of gross and fine motor functions in children with hemidecortication: predictors of outcomes and timing of surgery. J Child Neurol 14:304315, 1999 Graveline C, Hwang P, Bone G, et al: Evaluation of gross and fine motor functions in children with hemidecortication: predictors of outcomes and timing of surgery. J Child Neurol 14:304–315, 1999

    • Search Google Scholar
    • Export Citation
  • 16.

    Graveline CJ, , Mikulis DJ, & Crawley AP, et al: Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation. Pediatr Neurol 19:337342, 1998 Graveline CJ, Mikulis DJ, Crawley AP, et al: Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation. Pediatr Neurol 19:337–342, 1998

    • Search Google Scholar
    • Export Citation
  • 17.

    Grimm C, , Schreiber R, & Kristeva-Feige R, et al: A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol 106:2229, 1998 Grimm C, Schreiber R, Kristeva-Feige R, et al: A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol 106:22–29, 1998

    • Search Google Scholar
    • Export Citation
  • 18.

    Hansson T, & Brismar T: Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:2932, 1999 Hansson T, Brismar T: Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32, 1999

    • Search Google Scholar
    • Export Citation
  • 19.

    Hodge CJ Jr, , Huckins SC, & Szeverenyi NM, et al: Patterns of lateral sensory cortical activation determined using functional magnetic resonance imaging. J Neurosurg 89:769779, 1998 Hodge CJ Jr, Huckins SC, Szeverenyi NM, et al: Patterns of lateral sensory cortical activation determined using functional magnetic resonance imaging. J Neurosurg 89:769–779, 1998

    • Search Google Scholar
    • Export Citation
  • 20.

    Ibanez V, , Deiber MP, & Sadato N, et al: Effects of stimulus rate on regional cerebral blood flow after median nerve stimulation. Brain 118:13391351, 1995 Ibanez V, Deiber MP, Sadato N, et al: Effects of stimulus rate on regional cerebral blood flow after median nerve stimulation. Brain 118:1339–1351, 1995

    • Search Google Scholar
    • Export Citation
  • 21.

    Iwamura Y, , Iriki A, & Tanaka M: Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554556, 1994 Iwamura Y, Iriki A, Tanaka M: Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556, 1994

    • Search Google Scholar
    • Export Citation
  • 22.

    Jones EG, & Hendry SH: Distribution of callosal fibers around the hand representations in monkey somatic sensory cortex. Neurosci Lett 19:167172, 1980 Jones EG, Hendry SH: Distribution of callosal fibers around the hand representations in monkey somatic sensory cortex. Neurosci Lett 19:167–172, 1980

    • Search Google Scholar
    • Export Citation
  • 23.

    Jones EG, & Powell TP: Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions. Brain 92:717730, 1969 Jones EG, Powell TP: Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions. Brain 92:717–730, 1969

    • Search Google Scholar
    • Export Citation
  • 24.

    Killackey HP, , Gould HJ, & Cusick CG, et al: The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. J Comp Neurol 219:384419, 1983 Killackey HP, Gould HJ, Cusick CG, et al: The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. J Comp Neurol 219:384–419, 1983

    • Search Google Scholar
    • Export Citation
  • 25.

    Korvenoja A, , Huttunen J, & Salli E, et al: Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Hum Brain Mapping 8:1327, 1999 Korvenoja A, Huttunen J, Salli E, et al: Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Hum Brain Mapping 8:13–27, 1999

    • Search Google Scholar
    • Export Citation
  • 26.

    Korvenoja A, , Wikstrom H, & Huttunen J, et al: Activation of ipsilateral primary sensorimotor cortex by median nerve stimulation. Neuroreport 6:25892593, 1995 Korvenoja A, Wikstrom H, Huttunen J, et al: Activation of ipsilateral primary sensorimotor cortex by median nerve stimulation. Neuroreport 6:2589–2593, 1995

    • Search Google Scholar
    • Export Citation
  • 27.

    Krauss BR, & Apkarian AV: Group average activation maps of functional MRI: methodology of identifying group brain areas activated during painful thermal stimuli, motor and vibrotactile tasks in humans. Riv Neuroradiol 11:135138, 1998 Krauss BR, Apkarian AV: Group average activation maps of functional MRI: methodology of identifying group brain areas activated during painful thermal stimuli, motor and vibrotactile tasks in humans. Riv Neuroradiol 11:135–138, 1998

    • Search Google Scholar
    • Export Citation
  • 28.

    Kurth R, , Villringer K, & Mackert BM, et al: fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9:207212, 1998 Kurth R, Villringer K, Mackert BM, et al: fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9:207–212, 1998

    • Search Google Scholar
    • Export Citation
  • 29.

    Maegaki Y, , Maeoka Y, & Ishii S, et al: Central motor reorganization in cerebral palsy patients with bilateral cerebral lesions. Pediatr Res 45:559567, 1999 Maegaki Y, Maeoka Y, Ishii S, et al: Central motor reorganization in cerebral palsy patients with bilateral cerebral lesions. Pediatr Res 45:559–567, 1999

    • Search Google Scholar
    • Export Citation
  • 30.

    Maldjian JA, , Gottschalk A, & Patel RS, et al: Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study. Brain Res 824:291295, 1999 Maldjian JA, Gottschalk A, Patel RS, et al: Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study. Brain Res 824:291–295, 1999

    • Search Google Scholar
    • Export Citation
  • 31.

    Manzano GM, , De Navarro JM, & Nobrega JA, et al: Short latency median nerve somatosensory evoked potential (SEP): increase in stimulation frequency from 3 to 30 Hz. Electroencephalogr Clin Neurophysiol 96:229235, 1995 Manzano GM, De Navarro JM, Nobrega JA, et al: Short latency median nerve somatosensory evoked potential (SEP): increase in stimulation frequency from 3 to 30 Hz. Electroencephalogr Clin Neurophysiol 96:229–235, 1995

    • Search Google Scholar
    • Export Citation
  • 32.

    Mauguiere F, , Merlet I, & Forss N, et al: Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104:281289, 1997 Mauguiere F, Merlet I, Forss N, et al: Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104:281–289, 1997

    • Search Google Scholar
    • Export Citation
  • 33.

    Ngai AC, , Jolley MA, & D'Ambrosio R, et al: Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res 837:221228, 1999 Ngai AC, Jolley MA, D'Ambrosio R, et al: Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res 837:221–228, 1999

    • Search Google Scholar
    • Export Citation
  • 34.

    Noachtar S, , Luders HO, & Dinner DS, et al: Ipsilateral median somatosensory evoked potentials recorded from human somatosensory cortex. Electroencephalogr Clin Neurophysiol 104:189198, 1997 Noachtar S, Luders HO, Dinner DS, et al: Ipsilateral median somatosensory evoked potentials recorded from human somatosensory cortex. Electroencephalogr Clin Neurophysiol 104:189–198, 1997

    • Search Google Scholar
    • Export Citation
  • 35.

    Paulesu E, , Frackowiak RSJ, & Bottini G: Maps of somatosensory systems, in Frackowiak RSJ, , Friston KJ, & Frith CD, et al (eds): Human Brain Function. San Diego: Academic Press, 1997, pp 183242 Paulesu E, Frackowiak RSJ, Bottini G: Maps of somatosensory systems, in Frackowiak RSJ, Friston KJ, Frith CD, et al (eds): Human Brain Function. San Diego: Academic Press, 1997, pp 183–242

    • Search Google Scholar
    • Export Citation
  • 36.

    Polonara G, , Fabri M, & Manzoni T, et al: Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR 20:199205, 1999 Polonara G, Fabri M, Manzoni T, et al: Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR 20:199–205, 1999

    • Search Google Scholar
    • Export Citation
  • 37.

    Pratt H, , Politoske D, & Starr A: Mechanically and electrically evoked somatosensory potentials in humans: effects of stimulus presentation rate. Electroencephalogr Clin Neurophysiol 49:240249, 1980 Pratt H, Politoske D, Starr A: Mechanically and electrically evoked somatosensory potentials in humans: effects of stimulus presentation rate. Electroencephalogr Clin Neurophysiol 49:240–249, 1980

    • Search Google Scholar
    • Export Citation
  • 38.

    Preuss TM, & Goldman-Rakic PS: Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282:293316, 1989 Preuss TM, Goldman-Rakic PS: Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282:293–316, 1989

    • Search Google Scholar
    • Export Citation
  • 39.

    Puce A: Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol 12:450459, 1995 Puce A: Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol 12:450–459, 1995

    • Search Google Scholar
    • Export Citation
  • 40.

    Puce A, , Constable RT, & Luby ML, et al: Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262270, 1995 Puce A, Constable RT, Luby ML, et al: Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270, 1995

    • Search Google Scholar
    • Export Citation
  • 41.

    Sakata H, , Takaoka Y, & Kawarasaki A, et al: Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85102, 1973 Sakata H, Takaoka Y, Kawarasaki A, et al: Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102, 1973

    • Search Google Scholar
    • Export Citation
  • 42.

    Simoes C, & Hari R: Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage 10:408416, 1999 Simoes C, Hari R: Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage 10:408–416, 1999

    • Search Google Scholar
    • Export Citation
  • 43.

    Spiegel J, , Tintera J, & Gawehn J, et al: Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:4752, 1999 Spiegel J, Tintera J, Gawehn J, et al: Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:47–52, 1999

    • Search Google Scholar
    • Export Citation
  • 44.

    Talairach J, & Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Thieme, 1988, pp 1122 Talairach J, Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Thieme, 1988, pp 1–122

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 701 118 9
Full Text Views 170 14 1
PDF Downloads 131 12 1
EPUB Downloads 0 0 0