Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors

View More View Less
  • 1 Departments of Neuroradiology and Neurosurgery, Hôpital de la Salpêtrière, Paris, France; and Department of Medical Research, Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object. The goal of this study was to determine the somatotopical structure—function relationships of the primary motor cortex in individual patients by using functional magnetic resonance (fMR) imaging. This was done to assess whether there is a displacement of functional areas compared with anatomical landmarks in patients harboring brain tumors close to the central region, and to validate these findings with intraoperative cortical stimulation.

Methods. One hundred twenty hemispheres in 60 patients were studied by obtaining blood oxygen level—dependent fMR images in patients while they performed movements of the foot, hand, and face on both sides. There was a good correspondence between anatomical landmarks in the deep portion of the central sulcus on axial slices and the somatotopical organization of primary motor areas. Pixels activated during hand movements were centered on a small characteristic digitation; those activated during movements in the face and foot areas were located in the lower portion of the central sulcus (lateral to the hand area) and around the termination of the central sulcus, respectively. In diseased hemispheres, signal-intensity changes were still observed in the projection of the expected anatomical area. The fMR imaging data mapped intraoperative electrical stimulation in 92% of positive sites.

Conclusions. There was a high correspondence between the somatotopical anatomy and function in the central sulcus, which was similar in normal and diseased hemispheres. The fMR imaging and electrical stimulation data were highly concordant. These findings may enable the neurosurgeon to locate primary motor areas more easily during surgery.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address reprint requests to: Stéphane Lehéricy, M.D., Ph.D., Department of Neuroradiology, Bâtiment Babinski, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France. email: stephane.lehericy@psl.ap-hop-paris.fr.
  • 1.

    Bandettini PA, , Wong EC, & Hinks RS, et al: Time course EPI of human brain function during task activation. Magn Reson Med 25:390397, 1992 Bandettini PA, Wong EC, Hinks RS, et al: Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397, 1992

    • Search Google Scholar
    • Export Citation
  • 2.

    Berger MS, , Ojemann GA, & Lettich E: Neurophysiological monitoring during astrocytoma surgery. Neurosurg Clin N Am 1:6580, 1990 Berger MS, Ojemann GA, Lettich E: Neurophysiological monitoring during astrocytoma surgery. Neurosurg Clin N Am 1:65–80, 1990

    • Search Google Scholar
    • Export Citation
  • 3.

    Boxerman JL, , Hamberg LM, & Rosen BR, et al: MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555566, 1995 Boxerman JL, Hamberg LM, Rosen BR, et al: MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566, 1995

    • Search Google Scholar
    • Export Citation
  • 4.

    Colebatch JG, , Deiber MP, & Passingham RE, et al: Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:13921401, 1991 Colebatch JG, Deiber MP, Passingham RE, et al: Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65:1392–1401, 1991

    • Search Google Scholar
    • Export Citation
  • 5.

    Côté R, , Hachinski VC, & Shurvell BL, et al: The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke 17:731737, 1986 Côté R, Hachinski VC, Shurvell BL, et al: The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke 17:731–737, 1986

    • Search Google Scholar
    • Export Citation
  • 6.

    Dejerine J: Anatomie des Centres Nerveux. Paris: Rueff, 1895 Dejerine J: Anatomie des Centres Nerveux. Paris: Rueff, 1895

  • 7.

    Donoghue JP, , Leibovic S, & Sanes JN: Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res 89:119, 1992 Donoghue JP, Leibovic S, Sanes JN: Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles. Exp Brain Res 89:1–19, 1992

    • Search Google Scholar
    • Export Citation
  • 8.

    Grafton ST, , Woods RP, & Mazziotta JC, et al: Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735743, 1991 Grafton ST, Woods RP, Mazziotta JC, et al: Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735–743, 1991

    • Search Google Scholar
    • Export Citation
  • 9.

    Jack CR Jr, , Thompson RM, & Butts RK, et al: Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190:8592, 1994 Jack CR Jr, Thompson RM, Butts RK, et al: Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190:85–92, 1994

    • Search Google Scholar
    • Export Citation
  • 10.

    Kido DK, , LeMay M, & Levinson AW, et al: Computed tomographic localization of the precentral gyrus. Radiology 135:373377, 1980 Kido DK, LeMay M, Levinson AW, et al: Computed tomographic localization of the precentral gyrus. Radiology 135:373–377, 1980

    • Search Google Scholar
    • Export Citation
  • 11.

    Le Bihan D, & Karni A: Applications of magnetic resonance imaging to the study of human brain function. Curr Opin Neurobiol 5:231237, 1995 Le Bihan D, Karni A: Applications of magnetic resonance imaging to the study of human brain function. Curr Opin Neurobiol 5:231–237, 1995

    • Search Google Scholar
    • Export Citation
  • 12.

    Lehéricy S, , van de Moortele PF, & Lobel E, et al: Somatotopical organization of striatal activation during hand and toe movement: a 3-T functional magnetic resonance imaging study. Ann Neurol 44:398404, 1998 Lehéricy S, van de Moortele PF, Lobel E, et al: Somatotopical organization of striatal activation during hand and toe movement: a 3-T functional magnetic resonance imaging study. Ann Neurol 44:398–404, 1998

    • Search Google Scholar
    • Export Citation
  • 13.

    Naidich TP, & Brightbill TC: The pars marginalis. Part I: A “bracket” sign for the central sulcus in axial plane. Int J Neuroradiol 2:319, 1996 Naidich TP, Brightbill TC: The pars marginalis. Part I: A “bracket” sign for the central sulcus in axial plane. Int J Neuroradiol 2:3–19, 1996

    • Search Google Scholar
    • Export Citation
  • 14.

    Nii Y, , Uematsu S, & Lesser RP, et al: Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46:360367, 1996 Nii Y, Uematsu S, Lesser RP, et al: Does the central sulcus divide motor and sensory functions? Cortical mapping of human hand areas as revealed by electrical stimulation through subdural grid electrodes. Neurology 46:360–367, 1996

    • Search Google Scholar
    • Export Citation
  • 15.

    Ogawa S, , Tank DW, & Menon R: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:59515955, 1992 Ogawa S, Tank DW, Menon R: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955, 1992

    • Search Google Scholar
    • Export Citation
  • 16.

    Ono M, , Kubik S, & Abernathey CD: Atlas of the Cerebral Sulci. Stuttgart: Thieme, 1990 Ono M, Kubik S, Abernathey CD: Atlas of the Cerebral Sulci. Stuttgart: Thieme, 1990

    • Search Google Scholar
    • Export Citation
  • 17.

    Paradis AL, , Mangin JF, & Cornillaud-Pérès V, et al: Detection of periodic temporal responses in fMRI. Neuroimage 5:S469, 1997 (Abstract) Paradis AL, Mangin JF, Cornillaud-Pérès V, et al: Detection of periodic temporal responses in fMRI. Neuroimage 5:S469, 1997 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 18.

    Penfield W, & Brodley E: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389443, 1937 Penfield W, Brodley E: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443, 1937

    • Search Google Scholar
    • Export Citation
  • 19.

    Puce A, , Constable RT, & Luby ML, et al: Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262270, 1995 Puce A, Constable RT, Luby ML, et al: Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270, 1995

    • Search Google Scholar
    • Export Citation
  • 20.

    Pujol J, , Conesa G, & Deus J, et al: Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84:713, 1996 Pujol J, Conesa G, Deus J, et al: Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84:7–13, 1996

    • Search Google Scholar
    • Export Citation
  • 21.

    Rao SM, , Binder JR, & Hammeke TA, et al: Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45:919924, 1995 Rao SM, Binder JR, Hammeke TA, et al: Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45:919–924, 1995

    • Search Google Scholar
    • Export Citation
  • 22.

    Rumeau C, , Tzourio N, & Murayama N, et al: Location of hand function in the sensorimotor cortex: MR and functional correlation. AJNR 15:567572, 1994 Rumeau C, Tzourio N, Murayama N, et al: Location of hand function in the sensorimotor cortex: MR and functional correlation. AJNR 15:567–572, 1994

    • Search Google Scholar
    • Export Citation
  • 23.

    Salamon G, , Martini P, & Ternier F, et al: Topographical study of supratentorial brain tumors. J Neuroradiol 18:123140, 1991 Salamon G, Martini P, Ternier F, et al: Topographical study of supratentorial brain tumors. J Neuroradiol 18:123–140, 1991

    • Search Google Scholar
    • Export Citation
  • 24.

    Sastre-Janer FA, , Regis J, & Belin P, et al: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area. Cereb Cortex 8:641647, 1998 Sastre-Janer FA, Regis J, Belin P, et al: Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate of the hand area. Cereb Cortex 8:641–647, 1998

    • Search Google Scholar
    • Export Citation
  • 25.

    Sobel DF, , Gallen CC, & Schwartz BJ, et al: Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR 14:915925, 1993 Sobel DF, Gallen CC, Schwartz BJ, et al: Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR 14:915–925, 1993

    • Search Google Scholar
    • Export Citation
  • 26.

    Talairach J, & Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Thieme, 1988 Talairach J, Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Stuttgart: Thieme, 1988

    • Search Google Scholar
    • Export Citation
  • 27.

    Talairach J, & Tournoux P: Referentially Oriented Cerebral MRI Anatomy: An Atlas of Stereotaxic Anatomical Correlations for Gray and White Matter. Stuttgart: Thieme, 1993 Talairach J, Tournoux P: Referentially Oriented Cerebral MRI Anatomy: An Atlas of Stereotaxic Anatomical Correlations for Gray and White Matter. Stuttgart: Thieme, 1993

    • Search Google Scholar
    • Export Citation
  • 28.

    White LE, , Andrews TJ, & Hulette C, et al: Structure of the human sensorimotor system. I. Morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:1830, 1997 White LE, Andrews TJ, Hulette C, et al: Structure of the human sensorimotor system. I. Morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30, 1997

    • Search Google Scholar
    • Export Citation
  • 29.

    Woods RP, , Cherry SR, & Mazziotta JC: Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620633, 1992 Woods RP, Cherry SR, Mazziotta JC: Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620–633, 1992

    • Search Google Scholar
    • Export Citation
  • 30.

    Wunderlich G, , Knorr U, & Herzog H, et al: Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42:1827, 1998 Wunderlich G, Knorr U, Herzog H, et al: Precentral glioma location determines the displacement of cortical hand representation. Neurosurgery 42:18–27, 1998

    • Search Google Scholar
    • Export Citation
  • 31.

    Yetkin FZ, , Mueller WM, & Morris GL, et al: Functional MR activation correlated with intraoperative cortical mapping. AJNR 18:13111315, 1997 Yetkin FZ, Mueller WM, Morris GL, et al: Functional MR activation correlated with intraoperative cortical mapping. AJNR 18:1311–1315, 1997

    • Search Google Scholar
    • Export Citation
  • 32.

    Yoshiura T, , Hasuo K, & Mihara F, et al: Increased activity of the ipsilateral motor cortex during a hand motor task in patients with brain tumor and paresis. AJNR 18:865869, 1997 Yoshiura T, Hasuo K, Mihara F, et al: Increased activity of the ipsilateral motor cortex during a hand motor task in patients with brain tumor and paresis. AJNR 18:865–869, 1997

    • Search Google Scholar
    • Export Citation
  • 33.

    Yousry TA, , Schmid UD, & Alkhadhi H, et al: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141157, 1997 Yousry TA, Schmid UD, Alkhadhi H, et al: Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157, 1997

    • Search Google Scholar
    • Export Citation
  • 34.

    Yousry TA, , Schmid UD, & Jassoy AG, et al: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:2329, 1995 Yousry TA, Schmid UD, Jassoy AG, et al: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:23–29, 1995

    • Search Google Scholar
    • Export Citation
  • 35.

    Yousry TA, , Schmid UD, & Schmidt D, et al: The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg 85:608617, 1996 Yousry TA, Schmid UD, Schmidt D, et al: The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg 85:608–617, 1996

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 501 197 22
Full Text Views 179 13 0
PDF Downloads 85 11 0
EPUB Downloads 0 0 0