Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage

Kenneth R. Wagner Ph.D.1, Guohua Xi M.D.1, Ya Hua M.D.1, Marla Kleinholz B.S., B.S.N.1, Gabrielle M. de Courten-Myers M.D.1, and Ronald E. Myers M.D., Ph.D.1
View More View Less
  • 1 Departments of Neurology and Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Medical Research Service, Department of Veterans Affairs Medical Center, Cincinnati, Ohio
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

Object. The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous (“translucent”) white matter regions (> 10% increases in water contents) containing high levels of clotderived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH.

Methods. The authors infused autologous blood (1.7 ml) into frontal lobe white matter in a physiologically controlled model in pigs (weighing approximately 7 kg each) and froze their brains in situ at 1, 3, 5, or 8 hours postinfusion. Adenosine triphosphate (ATP), phosphocreatine (PCr), glycogen, glucose, lactate, and water contents were then measured in white and gray matter located ipsi- and contralateral to the hematomas, and metabolite concentrations in edematous brain regions were corrected for dilution.

In markedly edematous white matter, glycogen and glucose concentrations increased two- to fivefold compared with control during 8 hours postinfusion. Similarly, PCr levels increased several-fold by 5 hours, whereas, except for a moderate decrease at 1 hour, ATP remained unchanged. Lactate was markedly increased (approximately 20 µmol/g) at all times. In gyral gray matter overlying the hematoma, water contents and glycogen levels were significantly increased at 5 and 8 hours, whereas lactate levels were increased two- to fourfold at all times.

Conclusions. These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1.

    Baldwin SA, , Fugaccia I, & Brown DR, et al: Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 85:476481, 1996 Baldwin SA, Fugaccia I, Brown DR, et al: Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 85:476–481, 1996

    • Search Google Scholar
    • Export Citation
  • 2.

    Broderick J, , Brott T, & Tomsick T, et al: Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 34:882887, 1994 Broderick J, Brott T, Tomsick T, et al: Management of intracerebral hemorrhage in a large metropolitan population. Neurosurgery 34:882–887, 1994

    • Search Google Scholar
    • Export Citation
  • 3.

    Brott T, , Broderick J, & Barsan W, et al: Hyper-acute clot retraction in spontaneous intracerebral hemorrhage. Stroke 23:141, 1992 (Abstract) Brott T, Broderick J, Barsan W, et al: Hyper-acute clot retraction in spontaneous intracerebral hemorrhage. Stroke 23:141, 1992 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 4.

    Buczek M, , Ratcheson RA, & Lust WD, et al: Effects of focal cortical freezing lesion on regional energy metabolism. J Cereb Blood Flow Metab 11:845851, 1991 Buczek M, Ratcheson RA, Lust WD, et al: Effects of focal cortical freezing lesion on regional energy metabolism. J Cereb Blood Flow Metab 11:845–851, 1991

    • Search Google Scholar
    • Export Citation
  • 5.

    Bullock R, , Brock-Utne J, & van Dellen J, et al: Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow. Surg Neurol 29:101107, 1988 Bullock R, Brock-Utne J, van Dellen J, et al: Intracerebral hemorrhage in a primate model: effect on regional cerebral blood flow. Surg Neurol 29:101–107, 1988

    • Search Google Scholar
    • Export Citation
  • 6.

    Caplan LR: Intracerebral haemorrhage. Lancet 339:656658, 1992 Caplan LR: Intracerebral haemorrhage. Lancet 339:656–658, 1992

  • 7.

    d'Avella D, , Cicciarello R, & Zuccarello M, et al: Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: local changes in cerebral glucose utilization. Acta Neurochir 138:737744, 1996 d'Avella D, Cicciarello R, Zuccarello M, et al: Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: local changes in cerebral glucose utilization. Acta Neurochir 138:737–744, 1996

    • Search Google Scholar
    • Export Citation
  • 8.

    Dringen R, & Hamprecht B: Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J Neurochem 58:511517, 1992 Dringen R, Hamprecht B: Glucose, insulin, and insulin-like growth factor I regulate the glycogen content of astroglia-rich primary cultures. J Neurochem 58:511–517, 1992

    • Search Google Scholar
    • Export Citation
  • 9.

    Dul K, & Drayer BP: CT and MR imaging of intracerebral hemorrhage, in Kase CS, & Caplan LR (eds): Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994, pp 7398 Dul K, Drayer BP: CT and MR imaging of intracerebral hemorrhage, in Kase CS, Caplan LR (eds): Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994, pp 73–98

    • Search Google Scholar
    • Export Citation
  • 10.

    Fox PT, , Raichle ME, & Mintun MA, et al: Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462464, 1988 Fox PT, Raichle ME, Mintun MA, et al: Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464, 1988

    • Search Google Scholar
    • Export Citation
  • 11.

    Hovda DA, , Becker DP, & Katayama Y: Secondary injury and acidosis. J Neurotrauma 9 (Suppl 1):S47S60, 1992 Hovda DA, Becker DP, Katayama Y: Secondary injury and acidosis. J Neurotrauma 9 (Suppl 1):S47–S60, 1992

    • Search Google Scholar
    • Export Citation
  • 12.

    James JH, , Fang CH, & Schrantz SJ, et al: Linkage of aerobic glycolysis to sodium—potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98:23882397, 1996 James JH, Fang CH, Schrantz SJ, et al: Linkage of aerobic glycolysis to sodium—potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98:2388–2397, 1996

    • Search Google Scholar
    • Export Citation
  • 13.

    Kase CS, & Caplan LR (eds): Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994 Kase CS, Caplan LR (eds): Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994

    • Search Google Scholar
    • Export Citation
  • 14.

    Kaufman HH, & Schochet SS: Pathology, pathophysiology, and modeling, in Kaufman HH (ed): Intracerebral Hematomas. New York: Raven Press, 1992, pp 1321 Kaufman HH, Schochet SS: Pathology, pathophysiology, and modeling, in Kaufman HH (ed): Intracerebral Hematomas. New York: Raven Press, 1992, pp 13–21

    • Search Google Scholar
    • Export Citation
  • 15.

    Linn F, , Seo K, & Hossmann KA: Experimental transplantation gliomas in the adult cat brain. 3. Regional biochemistry. Acta Neurochir 99:8593, 1989 Linn F, Seo K, Hossmann KA: Experimental transplantation gliomas in the adult cat brain. 3. Regional biochemistry. Acta Neurochir 99:85–93, 1989

    • Search Google Scholar
    • Export Citation
  • 16.

    Lipton P, & Robacker K: Glycolysis and brain function: [K+]o stimulation of protein synthesis and K+ uptake require glycolysis. Fed Proc 42:28752880, 1983 Lipton P, Robacker K: Glycolysis and brain function: [K+]o stimulation of protein synthesis and K+ uptake require glycolysis. Fed Proc 42:2875–2880, 1983

    • Search Google Scholar
    • Export Citation
  • 17.

    Lisk DR, , Pasteur W, & Rhoades H, et al: Early presentation of hemispheric intracerebral hemorrhage: prediction of outcome and guidelines for treatment allocation. Neurology 44:133139, 1994 Lisk DR, Pasteur W, Rhoades H, et al: Early presentation of hemispheric intracerebral hemorrhage: prediction of outcome and guidelines for treatment allocation. Neurology 44:133–139, 1994

    • Search Google Scholar
    • Export Citation
  • 18.

    Lowry OH, & Passonneau JV: A Flexible System of Enzymatic Analysis. New York: Academic Press, 1972 Lowry OH, Passonneau JV: A Flexible System of Enzymatic Analysis. New York: Academic Press, 1972

    • Search Google Scholar
    • Export Citation
  • 19.

    Marmarou A: Intracellular acidosis in human and experimental brain injury. J Neurotrauma 9 (Suppl 2):S551S562, 1992 Marmarou A: Intracellular acidosis in human and experimental brain injury. J Neurotrauma 9 (Suppl 2):S551–S562, 1992

    • Search Google Scholar
    • Export Citation
  • 20.

    Mendelow AD: Spontaneous intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 54:193195, 1991 Mendelow AD: Spontaneous intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 54:193–195, 1991

    • Search Google Scholar
    • Export Citation
  • 21.

    Miquel J, & Haymaker W: Astroglial reaction to ionizing radiation: with emphasis on glycogen accumulation. Progr Brain Res 15:89114, 1965 Miquel J, Haymaker W: Astroglial reaction to ionizing radiation: with emphasis on glycogen accumulation. Progr Brain Res 15:89–114, 1965

    • Search Google Scholar
    • Export Citation
  • 22.

    Miquel J, & Haymaker W: Glycogen in the nervous system, in Haymaker W, & Adams RD (eds): Histology and Histopathology of the Nervous System. Springfield, IL: Charles C Thomas, 1982, pp 920972 Miquel J, Haymaker W: Glycogen in the nervous system, in Haymaker W, Adams RD (eds): Histology and Histopathology of the Nervous System. Springfield, IL: Charles C Thomas, 1982, pp 920–972

    • Search Google Scholar
    • Export Citation
  • 23.

    Mun-Bryce S, , Kroh FO, & White J, et al: Brain lactate and pH dissociation in edema: 1H- and 31P-NMR in collagenase-induced hemorrhage in rats. Am J Physiol 265:R697R702, 1993 Mun-Bryce S, Kroh FO, White J, et al: Brain lactate and pH dissociation in edema: 1H- and 31P-NMR in collagenase-induced hemorrhage in rats. Am J Physiol 265:R697–R702, 1993

    • Search Google Scholar
    • Export Citation
  • 24.

    Nath FP, , Kelly PT, & Jenkins A, et al: Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability and histochemistry. J Neurosurg 66:555562, 1987 Nath FP, Kelly PT, Jenkins A, et al: Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability and histochemistry. J Neurosurg 66:555–562, 1987

    • Search Google Scholar
    • Export Citation
  • 25.

    Ojemann RG, & Heros RC: Spontaneous brain hemorrhage. Stroke 14:468475, 1983 Ojemann RG, Heros RC: Spontaneous brain hemorrhage. Stroke 14:468–475, 1983

    • Search Google Scholar
    • Export Citation
  • 26.

    Okada Y, , Kloiber O, & Hossmann KA: Regional metabolism in experimental brain tumors in cats: relationship with acid/base, water, and electrolyte homeostasis. J Neurosurg 77:917926, 1992 Okada Y, Kloiber O, Hossmann KA: Regional metabolism in experimental brain tumors in cats: relationship with acid/base, water, and electrolyte homeostasis. J Neurosurg 77:917–926, 1992

    • Search Google Scholar
    • Export Citation
  • 27.

    Pappius HM: Local cerebral glucose utilization in thermally traumatized rat brain. Ann Neurol 9:484491, 1981 Pappius HM: Local cerebral glucose utilization in thermally traumatized rat brain. Ann Neurol 9:484–491, 1981

    • Search Google Scholar
    • Export Citation
  • 28.

    Passonneau JV, & Lauderdale VR: A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60:405412, 1974 Passonneau JV, Lauderdale VR: A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60:405–412, 1974

    • Search Google Scholar
    • Export Citation
  • 29.

    Paul RJ, , Bauer M, & Pease W: Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science 206:14141416, 1979 Paul RJ, Bauer M, Pease W: Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science 206:1414–1416, 1979

    • Search Google Scholar
    • Export Citation
  • 30.

    Pellerin L, & Magistretti PJ: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:1062510629, 1994 Pellerin L, Magistretti PJ: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629, 1994

    • Search Google Scholar
    • Export Citation
  • 31.

    Pfeiffer B, , Meyermann R, & Hamprecht B: Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97:405412, 1992 Pfeiffer B, Meyermann R, Hamprecht B: Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97:405–412, 1992

    • Search Google Scholar
    • Export Citation
  • 32.

    Sussman BJ, , Barber JB, & Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg 41:177186, 1974 Sussman BJ, Barber JB, Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg 41:177–186, 1974

    • Search Google Scholar
    • Export Citation
  • 33.

    Sutton LN, , Barranco D, & Greenberg J, et al: Cerebral blood flow and glucose metabolism in experimental brain edema. J Neurosurg 71:868874, 1989 Sutton LN, Barranco D, Greenberg J, et al: Cerebral blood flow and glucose metabolism in experimental brain edema. J Neurosurg 71:868–874, 1989

    • Search Google Scholar
    • Export Citation
  • 34.

    Sutton LN, , Welsh F, & Bruce DA: Bioenergetics of acute vasogenic edema. J Neurosurg 53:470476, 1980 Sutton LN, Welsh F, Bruce DA: Bioenergetics of acute vasogenic edema. J Neurosurg 53:470–476, 1980

    • Search Google Scholar
    • Export Citation
  • 35.

    Swanson RA: Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70 (Suppl):S138S144, 1992 Swanson RA: Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70 (Suppl):S138–S144, 1992

    • Search Google Scholar
    • Export Citation
  • 36.

    Swanson RA, , Yu ACH, & Chan PH, et al: Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte cultures. J Neurochem 54:490496, 1990 Swanson RA, Yu ACH, Chan PH, et al: Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte cultures. J Neurochem 54:490–496, 1990

    • Search Google Scholar
    • Export Citation
  • 37.

    Thulborn KR, & Atlas SW: Intracranial hemorrhage, in Atlas SW (ed): Magnetic Resonance Imaging of the Brain and Spine. New York: Raven Press, 1991, pp 175222 Thulborn KR, Atlas SW: Intracranial hemorrhage, in Atlas SW (ed): Magnetic Resonance Imaging of the Brain and Spine. New York: Raven Press, 1991, pp 175–222

    • Search Google Scholar
    • Export Citation
  • 38.

    Tildon JT, & Stevenson JH: Decreased oxidation of labeled glucose by dissociated brain cells in the presence of fetal bovine serum. Science 224:903904, 1984 Tildon JT, Stevenson JH: Decreased oxidation of labeled glucose by dissociated brain cells in the presence of fetal bovine serum. Science 224:903–904, 1984

    • Search Google Scholar
    • Export Citation
  • 39.

    Wagner KR, , Hua Y, & Xi G, et al: Pathophysiologic mechanisms underlying edema development in experimental intracerebral hemorrhage: magnetic resonance studies. Stroke 28:264, 1997 (Abstract) Wagner KR, Hua Y, Xi G, et al: Pathophysiologic mechanisms underlying edema development in experimental intracerebral hemorrhage: magnetic resonance studies. Stroke 28:264, 1997 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 40.

    Wagner KR, , Kleinholz M, & de Courten-Myers GM, et al: Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH and infarct size. J Cereb Blood Flow Metab 12:213222, 1992 Wagner KR, Kleinholz M, de Courten-Myers GM, et al: Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH and infarct size. J Cereb Blood Flow Metab 12:213–222, 1992

    • Search Google Scholar
    • Export Citation
  • 41.

    Wagner KR, & Myers RE: Topography of brain metabolites: rhesus monkey, goat, and cat. Exp Neurol 89:146158, 1985 Wagner KR, Myers RE: Topography of brain metabolites: rhesus monkey, goat, and cat. Exp Neurol 89:146–158, 1985

    • Search Google Scholar
    • Export Citation
  • 42.

    Wagner KR, , Tornheim PA, & Eichhold MK: Acute changes in regional cerebral metabolite values following experimental blunt head trauma. J Neurosurg 63:8896, 1985 Wagner KR, Tornheim PA, Eichhold MK: Acute changes in regional cerebral metabolite values following experimental blunt head trauma. J Neurosurg 63:88–96, 1985

    • Search Google Scholar
    • Export Citation
  • 43.

    Wagner KR, , Xi G, & Hua Y, et al: Clot removal following lysis with tissue plasminogen activator markedly reduces perihematomal edema in an intracerebral hemorrhage model. Stroke 27:183, 1996 (Abstract) Wagner KR, Xi G, Hua Y, et al: Clot removal following lysis with tissue plasminogen activator markedly reduces perihematomal edema in an intracerebral hemorrhage model. Stroke 27:183, 1996 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 44.

    Wagner KR, , Xi G, & Hua Y, et al: Experimental intracerebral hemorrhage: white matter regions adjacent to hematomas differ in pathophysiology and response to hyperglycemia. Soc Neurosci Abstr 20:418, 1994 (Abstract) Wagner KR, Xi G, Hua Y, et al: Experimental intracerebral hemorrhage: white matter regions adjacent to hematomas differ in pathophysiology and response to hyperglycemia. Soc Neurosci Abstr 20:418, 1994 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 45.

    Wagner KR, , Xi G, & Hua Y, et al: Hyperglycemia and brain lactate accumulation following intracerebral hemorrhage. J Neurochem 64 (Suppl):S16, 1995 (Abstract) Wagner KR, Xi G, Hua Y, et al: Hyperglycemia and brain lactate accumulation following intracerebral hemorrhage. J Neurochem 64 (Suppl):S16, 1995 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 46.

    Wagner KR, , Xi G, & Hua Y, et al: Lobar intracerebral hemorrhage model in pigs. Rapid edema development in perihematomal white matter. Stroke 27:490497, 1996 Wagner KR, Xi G, Hua Y, et al: Lobar intracerebral hemorrhage model in pigs. Rapid edema development in perihematomal white matter. Stroke 27:490–497, 1996

    • Search Google Scholar
    • Export Citation
  • 47.

    Watanabe H, & Passonneau JV: Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20:15431554, 1974 Watanabe H, Passonneau JV: Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20:1543–1554, 1974

    • Search Google Scholar
    • Export Citation
  • 48.

    Xi G, , Wagner KR, & Hua Y, et al: Interstitial serum protein stimulates glycogen synthesis in white matter astrocytes following experimental intracerebral hemorrhage? Soc Neurosci Abstr 20:418, 1994 (Abstract) Xi G, Wagner KR, Hua Y, et al: Interstitial serum protein stimulates glycogen synthesis in white matter astrocytes following experimental intracerebral hemorrhage? Soc Neurosci Abstr 20:418, 1994 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 49.

    Yang GY, , Betz AL, & Chenevert TL, et al: Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81:93102, 1994 Yang GY, Betz AL, Chenevert TL, et al: Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81:93–102, 1994

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 479 112 18
Full Text Views 183 21 1
PDF Downloads 137 19 2
EPUB Downloads 0 0 0