Cathepsin B and middle cerebral artery occlusion in the rat

Donald Seyfried M.D.1, Yuxia Han B.S.1, Zhang Zheng M.D., Ph.D.1, Nancy Day B.A.1, Kamiar Moin Ph.D.1, Sandra Rempel Ph.D.1, Bonnie Sloane Ph.D.1, and Michael Chopp Ph.D.1
View More View Less
  • 1 Departments of Neurosurgery and Neurology, Henry Ford Health Sciences Center, Detroit, Michigan; Department of Pharmacology, Wayne State University, Detroit, Michigan; and Department of Physics, Oakland University, Rochester, Michigan
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

✓ Lysosomal proteases, although tightly regulated under physiological conditions, are known to contribute to cell injury after various forms of tissue ischemia have occurred. Because cathepsin B is a prominent lysosomal protease found in brain parenchyma, the authors hypothesized that it may contribute to neuronal cell death after focal cerebral ischemia. The authors measured the expression and spatial distribution of cathepsin B within the ischemic brain in 43 animals by means of immunohistochemical analysis in a rat model of transient middle cerebral artery (MCA) occlusion. Cathepsin B activity was also measured within specific ischemic brain regions by using an in vitro assay (22 animals). In addition, the authors tested the therapeutic effect of preischemic intraventricular administration of stefin A, a cysteine protease inhibitor, on the volume of cerebral infarction after transient MCA occlusion (15 animals). Increased cathepsin B immunoreactivity was detected exclusively within the ischemic neurons after 2 hours of reperfusion following a 2-hour MCA occlusion. Cathepsin B immunolocalization in the ischemic region decreased by 24 hours of reperfusion, but then increased by 48 hours of reperfusion because the infarct was infiltrated by inflammatory cells. Increased immunolocalization of cathepsin B in the inflammatory cells located in the necrotic infarct core continued through 7 days of reperfusion. Cathepsin B enzymatic activity was significantly increased in the ischemic tissue at 2, 8, and 48 hours, but not at 24 hours of reperfusion after 2 hours of MCA occlusion. Continuous intraventricular infusion of stefin A, before 2 hours of MCA occlusion (15 animals), significantly reduced infarct volume compared with control animals (12 animals): the percentage of hemispheric infarct volume was 20 ± 3.9 compared with 33 ± 3.5 (standard error of the mean; p = 0.025). These data indicate that neuronal cathepsin B undergoes increased expression and activation within 2 hours of reperfusion after a 2-hour MCA occlusion and may be a mechanism contributing to neuronal cell death. Intraventricular infusion of stefin A, an inhibitor of cathepsin B, significantly reduces cerebral infarct volume in rats.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1.

    Akopov SE, , Sercombe R, & Seylaz J: Leukocyte-induced acute endothelial dysfunction in middle cerebral artery in rabbits. Response to aggregating platelets. Stroke 25:22462252, 1994 Akopov SE, Sercombe R, Seylaz J: Leukocyte-induced acute endothelial dysfunction in middle cerebral artery in rabbits. Response to aggregating platelets. Stroke 25:2246–2252, 1994

    • Search Google Scholar
    • Export Citation
  • 2.

    Banati RB, , Rothe G, & Valet G, et al: Detection of lysosomal cysteine proteinases in microglia flow cytometric measurement and histochemical localization of cathepsin B and L. Glia 7:183191, 1993 Banati RB, Rothe G, Valet G, et al: Detection of lysosomal cysteine proteinases in microglia flow cytometric measurement and histochemical localization of cathepsin B and L. Glia 7:183–191, 1993

    • Search Google Scholar
    • Export Citation
  • 3.

    Bartus RT, , Hayward NJ, & Elliott PJ, et al: Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25:22652270, 1994 Bartus RT, Hayward NJ, Elliott PJ, et al: Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25:2265–2270, 1994

    • Search Google Scholar
    • Export Citation
  • 4.

    Bode W, , Musil D, & Zucic D, et al: The refined x-ray crystal structures of human and rat liver cathepsin B, in Katunuma N, , Suzuki K, & Travis J, et al (eds): Biological Functions of Proteases and Inhibitors. Tokyo: Japan Scientific Societies Press, 1994, pp 2334 Bode W, Musil D, Zucic D, et al: The refined x-ray crystal structures of human and rat liver cathepsin B, in Katunuma N, Suzuki K, Travis J, et al (eds): Biological Functions of Proteases and Inhibitors. Tokyo: Japan Scientific Societies Press, 1994, pp 23–34

    • Search Google Scholar
    • Export Citation
  • 5.

    Bolli R, , Cannon RO, & Speir E, et al: Role of cellular proteinases in acute myocardial infarction. I. Proteolysis in nonischemic and ischemic rat myocardium and the effects of antipain, leupeptin, pepstatin and chymostatin administered in vivo. J Am Coll Cardiol 2:671680, 1983 Bolli R, Cannon RO, Speir E, et al: Role of cellular proteinases in acute myocardial infarction. I. Proteolysis in nonischemic and ischemic rat myocardium and the effects of antipain, leupeptin, pepstatin and chymostatin administered in vivo. J Am Coll Cardiol 2:671–680, 1983

    • Search Google Scholar
    • Export Citation
  • 6.

    Brorson JR, , Marcuccilli CJ, & Miller RJ: Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke 26:12591266, 1995 Brorson JR, Marcuccilli CJ, Miller RJ: Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke 26:1259–1266, 1995

    • Search Google Scholar
    • Export Citation
  • 7.

    Cataldo AM, , Paskevich PA, & Kominami E, et al: Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci USA 88:1099811002, 1991 Cataldo AM, Paskevich PA, Kominami E, et al: Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci USA 88:10998–11002, 1991

    • Search Google Scholar
    • Export Citation
  • 8.

    Chen H, , Chopp M, & Schultz L, et al: Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 118:109116, 1993 Chen H, Chopp M, Schultz L, et al: Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 118:109–116, 1993

    • Search Google Scholar
    • Export Citation
  • 9.

    Chopp M, , Zhang RL, & Chen H, et al: Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869876, 1994 Chopp M, Zhang RL, Chen H, et al: Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–876, 1994

    • Search Google Scholar
    • Export Citation
  • 10.

    Chue CH, , Yukioka N, & Yamada E, et al: The possible role of lysosomal enzymes in the pathogenesis of hypertensive cerebral lesions in spontaneously hypertensive rats. Acta Neuropathol 85:383389, 1993 Chue CH, Yukioka N, Yamada E, et al: The possible role of lysosomal enzymes in the pathogenesis of hypertensive cerebral lesions in spontaneously hypertensive rats. Acta Neuropathol 85:383–389, 1993

    • Search Google Scholar
    • Export Citation
  • 11.

    Clark WM, , Calcagno FA, & Gabler WL, et al: Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 25:14111416, 1994 Clark WM, Calcagno FA, Gabler WL, et al: Reduction of central nervous system reperfusion injury in rabbits using doxycycline treatment. Stroke 25:1411–1416, 1994

    • Search Google Scholar
    • Export Citation
  • 12.

    Decker RS, , Poole AR, & Crie JS, et al: Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. Am J Pathol 98:445452, 1980 Decker RS, Poole AR, Crie JS, et al: Lysosomal alterations in hypoxic and reoxygenated hearts. II. Immunohistochemical and biochemical changes in cathepsin D. Am J Pathol 98:445–452, 1980

    • Search Google Scholar
    • Export Citation
  • 13.

    Decker RS, , Poole AR, & Wildenthal K: Distribution of lysosomal cathepsin D in normal, ischemic, and starved rabbit cardiac myocytes. Circ Res 46:485494, 1980 Decker RS, Poole AR, Wildenthal K: Distribution of lysosomal cathepsin D in normal, ischemic, and starved rabbit cardiac myocytes. Circ Res 46:485–494, 1980

    • Search Google Scholar
    • Export Citation
  • 14.

    Decker RS, , Poole R, & Griffin EE, et al: Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest 59:911921, 1977 Decker RS, Poole R, Griffin EE, et al: Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest 59:911–921, 1977

    • Search Google Scholar
    • Export Citation
  • 15.

    Fong D, , Kartasova T, & Sloane BF, et al: Bacterial expression in human cysteine proteinase inhibitor stefin A. FEBS Lett 257:5558, 1989 Fong D, Kartasova T, Sloane BF, et al: Bacterial expression in human cysteine proteinase inhibitor stefin A. FEBS Lett 257:55–58, 1989

    • Search Google Scholar
    • Export Citation
  • 16.

    Garcia JH, , Yoshida Y, & Chen H, et al: Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623635, 1993 Garcia JH, Yoshida Y, Chen H, et al: Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623–635, 1993

    • Search Google Scholar
    • Export Citation
  • 17.

    Jochum M, , Machleidt W, & Fritz H: Proteolysis-induced pathomechanisms in acute inflammation and related therapeutic approaches, in Katunuma N, , Suzuki K, & Travis J, et al (eds): Biological Functions of Proteases and Inhibitors. Tokyo: Japan Scientific Societies Press, 1994, pp 161180 Jochum M, Machleidt W, Fritz H: Proteolysis-induced pathomechanisms in acute inflammation and related therapeutic approaches, in Katunuma N, Suzuki K, Travis J, et al (eds): Biological Functions of Proteases and Inhibitors. Tokyo: Japan Scientific Societies Press, 1994, pp 161–180

    • Search Google Scholar
    • Export Citation
  • 18.

    Kominami E, , Tsukahara T, & Bando Y, et al: Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem 98:8793, 1985 Kominami E, Tsukahara T, Bando Y, et al: Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem 98:87–93, 1985

    • Search Google Scholar
    • Export Citation
  • 19.

    Lah TT, , Babnik J, & Schiffmann E, et al: Cysteine proteinases and inhibitors in inflammation: their role in periodontal disease. J Periodontol 64 (Suppl 5):485491, 1993 Lah TT, Babnik J, Schiffmann E, et al: Cysteine proteinases and inhibitors in inflammation: their role in periodontal disease. J Periodontol 64 (Suppl 5):485–491, 1993

    • Search Google Scholar
    • Export Citation
  • 20.

    Lee KS, , Frank S, & Vanderklish P, et al: Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:72337237, 1991 Lee KS, Frank S, Vanderklish P, et al: Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:7233–7237, 1991

    • Search Google Scholar
    • Export Citation
  • 21.

    Li XK, , Matin AFM, & Suzuki H, et al: Effect of protease inhibitor on ischemia/reperfusion injury of the rat liver. Transplantation 56:13311336, 1993 Li XK, Matin AFM, Suzuki H, et al: Effect of protease inhibitor on ischemia/reperfusion injury of the rat liver. Transplantation 56:1331–1336, 1993

    • Search Google Scholar
    • Export Citation
  • 22.

    Matsuo Y, , Onodera H, & Shiga Y, et al: Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25:14691475, 1994 Matsuo Y, Onodera H, Shiga Y, et al: Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25:1469–1475, 1994

    • Search Google Scholar
    • Export Citation
  • 23.

    Mikkelsen T, , Yan PS, & Ho KL, et al: Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J Neurosurg 83:285290, 1990 Mikkelsen T, Yan PS, Ho KL, et al: Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J Neurosurg 83:285–290, 1990

    • Search Google Scholar
    • Export Citation
  • 24.

    Moin K, , Day NA, & Sameni M, et al: Human tumour cathepsin B. Comparison with normal liver cathepsin B. Biochem J 285:427434, 1992 Moin K, Day NA, Sameni M, et al: Human tumour cathepsin B. Comparison with normal liver cathepsin B. Biochem J 285:427–434, 1992

    • Search Google Scholar
    • Export Citation
  • 25.

    Nakamura Y, , Takeda M, & Suzuki H, et al: Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci Lett 130:195198, 1991 Nakamura Y, Takeda M, Suzuki H, et al: Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci Lett 130:195–198, 1991

    • Search Google Scholar
    • Export Citation
  • 26.

    Nakanishi H, , Tsukuba T, & Kondou T, et al: Transient forebrain ischemia induces increased expression and specific localization of cathepsins E and D in rat hippocampus and neostriatum. Exp Neurol 121:215223, 1993 Nakanishi H, Tsukuba T, Kondou T, et al: Transient forebrain ischemia induces increased expression and specific localization of cathepsins E and D in rat hippocampus and neostriatum. Exp Neurol 121:215–223, 1993

    • Search Google Scholar
    • Export Citation
  • 27.

    Ogata N, , Yanekawa Y, & Taki W, et al: Degradation of neurofilament protein in cerebral ischemia. J Neurosurg 70:103107, 1989 Ogata N, Yanekawa Y, Taki W, et al: Degradation of neurofilament protein in cerebral ischemia. J Neurosurg 70:103–107, 1989

    • Search Google Scholar
    • Export Citation
  • 28.

    Ohshita T, , Nikawa T, & Towatari T, et al: Effects of selective inhibition of cathepsin B and general inhibition of cysteine proteinases on lysosomal proteolysis in rat liver in vivo and in vitro. Eur J Biochem 209:223231, 1992 Ohshita T, Nikawa T, Towatari T, et al: Effects of selective inhibition of cathepsin B and general inhibition of cysteine proteinases on lysosomal proteolysis in rat liver in vivo and in vitro. Eur J Biochem 209:223–231, 1992

    • Search Google Scholar
    • Export Citation
  • 29.

    Okuda M, & Lefer AM: Lysosomal hypothesis in evolution of myocardial infarction. Subcellular fractionation and electron microscopic cytochemical study. Jap Heart J 20:643656, 1979 Okuda M, Lefer AM: Lysosomal hypothesis in evolution of myocardial infarction. Subcellular fractionation and electron microscopic cytochemical study. Jap Heart J 20:643–656, 1979

    • Search Google Scholar
    • Export Citation
  • 30.

    Paxinos G, & Watson C: The Rat Brain in Stereotactic Coordinates. San Diego: Academic Press, 1986 Paxinos G, Watson C: The Rat Brain in Stereotactic Coordinates. San Diego: Academic Press, 1986

    • Search Google Scholar
    • Export Citation
  • 31.

    Rami A, & Knieglstein J: Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res 609:6770, 1993 Rami A, Knieglstein J: Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res 609:67–70, 1993

    • Search Google Scholar
    • Export Citation
  • 32.

    Rempel SA, , Rosenblum ML, & Mikkelsen T, et al: Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54:60276031, 1994 Rempel SA, Rosenblum ML, Mikkelsen T, et al: Cathepsin B expression and localization in glioma progression and invasion. Cancer Res 54:6027–6031, 1994

    • Search Google Scholar
    • Export Citation
  • 33.

    Roberts-Lewis JM, , Savage MJ, & Marcy VR, et al: Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14:39343944, 1994 Roberts-Lewis JM, Savage MJ, Marcy VR, et al: Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14:3934–3944, 1994

    • Search Google Scholar
    • Export Citation
  • 34.

    Rozhin J, , Gomez AP, & Ziegler GH, et al: Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors. Cancer Res 50:62786284, 1990 Rozhin J, Gomez AP, Ziegler GH, et al: Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors. Cancer Res 50:6278–6284, 1990

    • Search Google Scholar
    • Export Citation
  • 35.

    Sasai Y, , Nakamura N, & Kobayashi Y, et al: Studies on intracardiac acid hydrolases in the ischemic myocardial necrosis. Jap Circ J 46:13371344, 1982 Sasai Y, Nakamura N, Kobayashi Y, et al: Studies on intracardiac acid hydrolases in the ischemic myocardial necrosis. Jap Circ J 46:1337–1344, 1982

    • Search Google Scholar
    • Export Citation
  • 36.

    Siman R, , Gall C, & Perlmutter LS, et al: Distribution of calpain I, an enzyme associated with degenerative activity, in rat brain. Brain Res 347:399403, 1985 Siman R, Gall C, Perlmutter LS, et al: Distribution of calpain I, an enzyme associated with degenerative activity, in rat brain. Brain Res 347:399–403, 1985

    • Search Google Scholar
    • Export Citation
  • 37.

    Siman R, , Noszek JC, & Kegerise C: Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:15791590, 1988 Siman R, Noszek JC, Kegerise C: Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590, 1988

    • Search Google Scholar
    • Export Citation
  • 38.

    Takio K, , Towatari T, & Katunuma N, et al: Homology of amino acid sequences of rat liver cathepsins B and H with that of papain. Proc Natl Acad Sci USA 80:36663670, 1983 Takio K, Towatari T, Katunuma N, et al: Homology of amino acid sequences of rat liver cathepsins B and H with that of papain. Proc Natl Acad Sci USA 80:3666–3670, 1983

    • Search Google Scholar
    • Export Citation
  • 39.

    Zalewska T, , Kasai Y, & Kawashima S: Calcium-dependent proteolytic activity in hypoxic rat brain. Biomed Biochem Acta 48:S166S169, 1989 Zalewska T, Kasai Y, Kawashima S: Calcium-dependent proteolytic activity in hypoxic rat brain. Biomed Biochem Acta 48:S166–S169, 1989

    • Search Google Scholar
    • Export Citation
  • 40.

    Zea Longa Z, , Weinstein PR, & Carlson S, et al: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:8491, 1989 Zea Longa Z, Weinstein PR, Carlson S, et al: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91, 1989

    • Search Google Scholar
    • Export Citation
  • 41.

    Zhang RL, , Chopp M, & Chen H, et al: Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:310, 1994 Zhang RL, Chopp M, Chen H, et al: Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10, 1994

    • Search Google Scholar
    • Export Citation
  • 42.

    Zhang RL, , Chopp M, & Jiang N, et al: Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26:14381443, 1995 Zhang RL, Chopp M, Jiang N, et al: Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26:1438–1443, 1995

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 808 406 306
Full Text Views 160 6 2
PDF Downloads 83 7 3
EPUB Downloads 0 0 0