Pathophysiology and treatment of focal cerebral ischemia

Part II: Mechanisms of damage and treatment

View More View Less
  • 1 Laboratory for Experimental Brain Research, Experimental Research Center, Lund University Hospital, Lund, Sweden
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

✓ The mechanisms that give rise to ischemic brain damage have not been definitively determined, but considerable evidence exists that three major factors are involved: increases in the intercellular cytosolic calcium concentration (Ca++i), acidosis, and production of free radicals.

A nonphysiological rise in Ca++i due to a disturbed pump/leak relationship for calcium is believed to cause cell damage by overactivation of lipases and proteases and possibly also of endonucleases, and by alterations of protein phosphorylation, which secondarily affects protein synthesis and genome expression. The severity of this disturbance depends on the density of ischemia. In complete or near-complete ischemia of the cardiac arrest type, pump activity has ceased and the calcium leak is enhanced by the massive release of excitatory amino acids. As a result, multiple calcium channels are opened. This is probably the scenario in the focus of an ischemic lesion due to middle cerebral artery occlusion. Such ischemic tissues can be salvaged only by recirculation, and any brain damage incurred is delayed, suggesting that the calcium transient gives rise to sustained changes in membrane function and metabolism. If the ischemia is less dense, as in the penumbral zone of a focal ischemic lesion, pump failure may be moderate and the leak may be only slightly or intermittently enhanced. These differences in the pump/leak relationship for calcium explain why calcium and glutamate antagonists may lack effect on the cardiac arrest type of ischemia, while decreasing infarct size in focal ischemia.

The adverse effects of acidosis may be exerted by several mechanisms. When the ischemia is sustained, acidosis may promote edema formation by inducing Na+ and Cl accumulation via coupled Na+/H+ and Cl/HCO3 exchange; however, it may also prevent recovery of mitochondrial metabolism and resumption of H+ extrusion. If the ischemia is transient, pronounced intraischemic acidosis triggers delayed damage characterized by gross edema and seizures. Possibly, this is a result of free-radical formation. If the ischemia is moderate, as in the penumbral zone of a focal ischemic lesion, the effect of acidosis is controversial. In fact, enhanced glucolysis may then be beneficial.

Although free radicals have long been assumed to be mediators of ischemic cell death, it is only recently that more substantial evidence of their participation has been produced. It now seems likely that one major target of free radicals is the microvasculature, and that free radicals and other mediators of inflammatory reactions (such as platelet-activating factor) aggravate the ischemic lesion by causing microvascular dysfunction and blood-brain barrier disruption.

Solid experimental evidence exists that the infarct resulting from middle cerebral artery occlusion can be reduced by glutamate antagonists, by several calcium antagonists, and by some drugs acting on Ca++ and Na+ influx. In addition, published reports hint that qualitatively similar results are obtained with drugs whose sole or main effect is to scavenge free radicals. Thus, there is substantial experimental evidence that the ischemic lesions due to middle cerebral artery occlusion can be ameliorated by drugs, sometimes dramatically; however, the therapeutic window seems small, maximally 3 to 6 hours. This suggests that if these therapeutic principles are to be successfully applied to the clinical situation, patient management must change.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address reprint requests to: Bo K. Siesjö, M.D., Laboratory for Experimental Brain Research, Experimental Research Center, Lund University Hospital, S-221 85 Lund, Sweden.
  • 1.

    Abe K, , Yuki S, & Kogure K: Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 19:480485, 1988 Abe K, Yuki S, Kogure K: Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 19:480–485, 1988

    • Search Google Scholar
    • Export Citation
  • 2.

    Agardh CD, , Zhang H, & Smith ML, et al: Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int J Dev Neurosci 9:127138, 1991 Agardh CD, Zhang H, Smith ML, et al: Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int J Dev Neurosci 9:127–138, 1991

    • Search Google Scholar
    • Export Citation
  • 3.

    Akaike N, , Kostyuk PG, & Osipchuk YV: Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J Physiol (Lond) 412:181195, 1989 Akaike N, Kostyuk PG, Osipchuk YV: Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones. J Physiol (Lond) 412:181–195, 1989

    • Search Google Scholar
    • Export Citation
  • 4.

    Alkon DL, & Rasmussen H: A spatial-temporal model of cell activation. Science 239:9981005, 1988 Alkon DL, Rasmussen H: A spatial-temporal model of cell activation. Science 239:998–1005, 1988

    • Search Google Scholar
    • Export Citation
  • 5.

    Alps BJ, & Hass WK: The potential beneficial effect of nicardipine in a rat model of transient forebrain ischemia. Neurology 37:809814, 1987 Alps BJ, Hass WK: The potential beneficial effect of nicardipine in a rat model of transient forebrain ischemia. Neurology 37:809–814, 1987

    • Search Google Scholar
    • Export Citation
  • 6.

    Andiné P, , Jacobson I, & Hagberg H: Calcium uptake evoked by electrical stimulation is enhanced postischemically and precedes delayed neuronal death in CA1 of rat hippocampus: involvement of N-methyl-D-aspartate receptors. J Cereb Blood Flow Metab 8:799807, 1988 Andiné P, Jacobson I, Hagberg H: Calcium uptake evoked by electrical stimulation is enhanced postischemically and precedes delayed neuronal death in CA1 of rat hippocampus: involvement of N-methyl-D-aspartate receptors. J Cereb Blood Flow Metab 8:799–807, 1988

    • Search Google Scholar
    • Export Citation
  • 7.

    Ban M, , Tonai T, & Kohno T, et al: A flavonoid inhibitor of 5-lipoxygenase inhibits leukotriene production following ischemia in gerbil brain. Stroke 20:248252, 1989 Ban M, Tonai T, Kohno T, et al: A flavonoid inhibitor of 5-lipoxygenase inhibits leukotriene production following ischemia in gerbil brain. Stroke 20:248–252, 1989

    • Search Google Scholar
    • Export Citation
  • 8.

    Bazan N, , Squinto S, & Braquet P, et al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:12361242, 1991 Bazan N, Squinto S, Braquet P, et al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:1236–1242, 1991

    • Search Google Scholar
    • Export Citation
  • 9.

    Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electro-shock. Adv Exp Med Biol 72:317335, 1976 Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electro-shock. Adv Exp Med Biol 72:317–335, 1976

    • Search Google Scholar
    • Export Citation
  • 10.

    Beckman JS, , Beckman TW, & Chen J, et al: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:16201624, 1990 Beckman JS, Beckman TW, Chen J, et al: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624, 1990

    • Search Google Scholar
    • Export Citation
  • 11.

    Berridge MJ: Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220:345360, 1984 Berridge MJ: Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220:345–360, 1984

    • Search Google Scholar
    • Export Citation
  • 12.

    Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159193, 1987 Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193, 1987

    • Search Google Scholar
    • Export Citation
  • 13.

    Betz AL: Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44:574579, 1985 Betz AL: Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44:574–579, 1985

    • Search Google Scholar
    • Export Citation
  • 14.

    Bevan S, & Wood JN: Arachidonic-acid metabolites as second messengers. Nature 328:20, 1987 Bevan S, Wood JN: Arachidonic-acid metabolites as second messengers. Nature 328:20, 1987

    • Search Google Scholar
    • Export Citation
  • 15.

    Bhakoo KK, , Crockard HA, & Lascelles PT: Regional studies of changes in brain fatty acid following experimental ischemia and reperfusion in the gerbil. J Neurochem 43:10251031, 1984 Bhakoo KK, Crockard HA, Lascelles PT: Regional studies of changes in brain fatty acid following experimental ischemia and reperfusion in the gerbil. J Neurochem 43:1025–1031, 1984

    • Search Google Scholar
    • Export Citation
  • 16.

    Bielenberg G, & Wagner G: PAF antagonists reduce infarct size in focal ischemia in the rat brain, in Krieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 281284 Bielenberg G, Wagner G: PAF antagonists reduce infarct size in focal ischemia in the rat brain, in Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 281–284

    • Search Google Scholar
    • Export Citation
  • 17.

    Birkle DL, , Kurian P, & Braquet P, et al: Platelet-activating factor antagonist BN52021 decreases accumulation of free fatty polyunsaturated fatty acid in mouse brain during ischemia and electroconvulsive shock. J Neurochem 51:19001905, 1988 Birkle DL, Kurian P, Braquet P, et al: Platelet-activating factor antagonist BN52021 decreases accumulation of free fatty polyunsaturated fatty acid in mouse brain during ischemia and electroconvulsive shock. J Neurochem 51:1900–1905, 1988

    • Search Google Scholar
    • Export Citation
  • 18.

    Biros MH, , Dimlich RVW, & Barsan WG: Postinsult treatment of ischemia-induced cerebral lactic acidosis in the rat. Ann Emerg Med 15:397404, 1986 Biros MH, Dimlich RVW, Barsan WG: Postinsult treatment of ischemia-induced cerebral lactic acidosis in the rat. Ann Emerg Med 15:397–404, 1986

    • Search Google Scholar
    • Export Citation
  • 19.

    Black KL, & Hoff JT: Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann Neurol 18:349351, 1985 Black KL, Hoff JT: Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats. Ann Neurol 18:349–351, 1985

    • Search Google Scholar
    • Export Citation
  • 20.

    Boisvert DP: In vivo assessment of hydroxyl free radical production in the brain. J Cereb Blood Flow Metab 11 (Suppl):637, 1991 Boisvert DP: In vivo assessment of hydroxyl free radical production in the brain. J Cereb Blood Flow Metab 11 (Suppl):637, 1991

    • Search Google Scholar
    • Export Citation
  • 21.

    Bolli R, , Jeroudi MO, & Patel BS, et al: Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607622, 1989 Bolli R, Jeroudi MO, Patel BS, et al: Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622, 1989

    • Search Google Scholar
    • Export Citation
  • 22.

    Braquet P, , Touqui L, & Shen TY, et al: Perspectives in platelet-activating factor research. Pharmacol Rev 39:97145, 1987 Braquet P, Touqui L, Shen TY, et al: Perspectives in platelet-activating factor research. Pharmacol Rev 39:97–145, 1987

    • Search Google Scholar
    • Export Citation
  • 23.

    Braughler JM, & Hall ED: Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6:289301, 1989 Braughler JM, Hall ED: Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6:289–301, 1989

    • Search Google Scholar
    • Export Citation
  • 24.

    Braughler JM, , Pregenzer JF, & Chase RL, et al: Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:1043810440, 1987 Braughler JM, Pregenzer JF, Chase RL, et al: Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440, 1987

    • Search Google Scholar
    • Export Citation
  • 25.

    Braunwald E, & Kloner RA: Myocardial reperfusion: a double-edge sword? J Clin Invest 76:17131719, 1985 Braunwald E, Kloner RA: Myocardial reperfusion: a double-edge sword? J Clin Invest 76:1713–1719, 1985

    • Search Google Scholar
    • Export Citation
  • 26.

    Buchan A, , Li H, & Pulsinelli WA: The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci 11:10491056, 1991 Buchan A, Li H, Pulsinelli WA: The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci 11:1049–1056, 1991

    • Search Google Scholar
    • Export Citation
  • 27.

    Buchan AM: Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc Brain Metab Rev 2:126, 1990 Buchan AM: Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc Brain Metab Rev 2:1–26, 1990

    • Search Google Scholar
    • Export Citation
  • 28.

    Buchan AM, , Xue D, & Huang ZG, et al: Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuro Report 2:473476, 1991 Buchan AM, Xue D, Huang ZG, et al: Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuro Report 2:473–476, 1991

    • Search Google Scholar
    • Export Citation
  • 29.

    Bureš J, & Burešováa O: Activation of latent foci of spreading cortical depression in rats. J Neurophysiol 23:225236, 1960 Bureš J, Burešováa O: Activation of latent foci of spreading cortical depression in rats. J Neurophysiol 23:225–236, 1960

    • Search Google Scholar
    • Export Citation
  • 30.

    Cala P: Volume regulation by red blood cell: mechanisms of ion transport. Mol Physiol 4:3352, 1983 Cala P: Volume regulation by red blood cell: mechanisms of ion transport. Mol Physiol 4:33–52, 1983

    • Search Google Scholar
    • Export Citation
  • 31.

    Chan P, , Epstein C, & Kinouchi H, et al: Role of superoxide dismutase in ischemic brain injury: reduction of edema and infarction in transgenic mice following focal cerebral ischemia. Prog Brain Res 89:(In press, 1992) Chan P, Epstein C, Kinouchi H, et al: Role of superoxide dismutase in ischemic brain injury: reduction of edema and infarction in transgenic mice following focal cerebral ischemia. Prog Brain Res 89: (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 32.

    Chan PH, & Fishman RA: Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35:10041007, 1980 Chan PH, Fishman RA: Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35:1004–1007, 1980

    • Search Google Scholar
    • Export Citation
  • 33.

    Chan PH, , Schmidley JW, & Fishman RA, et al: Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315320, 1984 Chan PH, Schmidley JW, Fishman RA, et al: Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320, 1984

    • Search Google Scholar
    • Export Citation
  • 34.

    Chen M, , Bullock R, & Graham DI, et al: Evaluation of a competitive NMDA antagonist (D-CPPene) in feline focal cerebral ischemia. Ann Neurol 30:6270, 1991 Chen M, Bullock R, Graham DI, et al: Evaluation of a competitive NMDA antagonist (D-CPPene) in feline focal cerebral ischemia. Ann Neurol 30:62–70, 1991

    • Search Google Scholar
    • Export Citation
  • 35.

    Chen ST, , Hsu CY, & Hogan EL, et al: Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology 36:466470, 1986 Chen ST, Hsu CY, Hogan EL, et al: Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia. Neurology 36:466–470, 1986

    • Search Google Scholar
    • Export Citation
  • 36.

    Cheung JY, , Bonventre JV, & Malis CD, et al: Calcium and ischemic injury. N Engl J Med 314:16701676, 1986 Cheung JY, Bonventre JV, Malis CD, et al: Calcium and ischemic injury. N Engl J Med 314:1670–1676, 1986

    • Search Google Scholar
    • Export Citation
  • 37.

    Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:105147, 1990 Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:105–147, 1990

    • Search Google Scholar
    • Export Citation
  • 38.

    Choi DW: Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465469, 1988 Choi DW: Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11:465–469, 1988

    • Search Google Scholar
    • Export Citation
  • 39.

    Choi DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623634, 1988 Choi DW: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634, 1988

    • Search Google Scholar
    • Export Citation
  • 40.

    Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369379, 1987 Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379, 1987

    • Search Google Scholar
    • Export Citation
  • 41.

    Clemens JA, , Ho PPK, & Panetta JA: LY178002 reduces rat brain damage after transient global forebrain ischemia. Stroke 22:10481052, 1991 Clemens JA, Ho PPK, Panetta JA: LY178002 reduces rat brain damage after transient global forebrain ischemia. Stroke 22:1048–1052, 1991

    • Search Google Scholar
    • Export Citation
  • 42.

    Connor JA, , Wadman WJ, & Hockberger PE, et al: Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240:649653, 1988 Connor JA, Wadman WJ, Hockberger PE, et al: Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240:649–653, 1988

    • Search Google Scholar
    • Export Citation
  • 43.

    Cragoe EJ Jr, , Gould NP, & Woltersdorf OW, et al: Agents for the treatment of brain injury. 1. (Aryloxy)alkanoic acids. J Med Chem 25:567579, 1982 Cragoe EJ Jr, Gould NP, Woltersdorf OW, et al: Agents for the treatment of brain injury. 1. (Aryloxy)alkanoic acids. J Med Chem 25:567–579, 1982

    • Search Google Scholar
    • Export Citation
  • 44.

    de Courten-Myers GM, , Kleinholz M, & Wagner KR, et al: Fatal strokes in hyperglycemic cats. Stroke 20:17071715, 1989 de Courten-Myers GM, Kleinholz M, Wagner KR, et al: Fatal strokes in hyperglycemic cats. Stroke 20:1707–1715, 1989

    • Search Google Scholar
    • Export Citation
  • 45.

    Demopoulos H, , Flamm E, & Seligman M, et al: Molecular pathology of lipids in CNS membranes, in Jobsis FF (ed): Oxygen and Physiological Function. Dallas: Professional Information Library, 1977, pp 491508 Demopoulos H, Flamm E, Seligman M, et al: Molecular pathology of lipids in CNS membranes, in Jobsis FF (ed): Oxygen and Physiological Function. Dallas: Professional Information Library, 1977, pp 491–508

    • Search Google Scholar
    • Export Citation
  • 46.

    Deshpande JK, , Siesjö BK, & Wieloch T: Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:8995, 1987 Deshpande JK, Siesjö BK, Wieloch T: Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab 7:89–95, 1987

    • Search Google Scholar
    • Export Citation
  • 47.

    Deshpande JK, & Wieloch T: Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology 64:215224, 1986 Deshpande JK, Wieloch T: Flunarizine, a calcium entry blocker, ameliorates ischemic brain damage in the rat. Anesthesiology 64:215–224, 1986

    • Search Google Scholar
    • Export Citation
  • 48.

    Dirnagl U, , Tanabe J, & Pulsinelli W: Pre- and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res 527:6268, 1990 Dirnagl U, Tanabe J, Pulsinelli W: Pre- and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain Res 527:62–68, 1990

    • Search Google Scholar
    • Export Citation
  • 49.

    Dumius A, , Sebben M, & Haynes L, et al: NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:6870, 1988 (Letters) Dumius A, Sebben M, Haynes L, et al: NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70, 1988 (Letters)

    • Search Google Scholar
    • Export Citation
  • 50.

    Fagg GE, , Foster AC, & Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357363, 1986 Fagg GE, Foster AC, Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357–363, 1986

    • Search Google Scholar
    • Export Citation
  • 51.

    Flamm ES, , Adams HP Jr, & Beck DW, et al: Dose-escalation study of intravenous nicardipine in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 68:393400, 1988 Flamm ES, Adams HP Jr, Beck DW, et al: Dose-escalation study of intravenous nicardipine in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 68:393–400, 1988

    • Search Google Scholar
    • Export Citation
  • 52.

    Fleischer JE, , Tateishi A, & Drummond JD, et al: MK-801, an excitatory amino acid antagonist, does not improve neurologic outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 9:795804, 1989 Fleischer JE, Tateishi A, Drummond JD, et al: MK-801, an excitatory amino acid antagonist, does not improve neurologic outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 9:795–804, 1989

    • Search Google Scholar
    • Export Citation
  • 53.

    Folbergrová J, , Kiyota Y, & Pahlmark K, et al: Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab (In press, 1992) Folbergrová J, Kiyota Y, Pahlmark K, et al: Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 54.

    Freeman BA, & Crapo JD: Biology of disease. Free radicals and tissue injury. Lab Invest 47:412426, 1982 Freeman BA, Crapo JD: Biology of disease. Free radicals and tissue injury. Lab Invest 47:412–426, 1982

    • Search Google Scholar
    • Export Citation
  • 55.

    Frerichs KU, , Lindsberg PJ, & Hallenbeck JM, et al: Platelet-activating factor and progressive brain damage following focal brain injury. J Neurosurg 73:223233, 1990 Frerichs KU, Lindsberg PJ, Hallenbeck JM, et al: Platelet-activating factor and progressive brain damage following focal brain injury. J Neurosurg 73:223–233, 1990

    • Search Google Scholar
    • Export Citation
  • 56.

    Fridovich I: The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense. Science 201:875880, 1978 Fridovich I: The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense. Science 201:875–880, 1978

    • Search Google Scholar
    • Export Citation
  • 57.

    Garthwaite G, & Garthwaite J: Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 66:193198, 1986 Garthwaite G, Garthwaite J: Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 66:193–198, 1986

    • Search Google Scholar
    • Export Citation
  • 58.

    Garthwaite J: Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:6067, 1991 Garthwaite J: Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14:60–67, 1991

    • Search Google Scholar
    • Export Citation
  • 59.

    Gaudet RJ, , Alam I, & Levine L: Accumulation of cyclo-oxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 35:653658, 1980 Gaudet RJ, Alam I, Levine L: Accumulation of cyclo-oxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 35:653–658, 1980

    • Search Google Scholar
    • Export Citation
  • 60.

    Giffard RG, , Monyer H, & Christine CW, et al: Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506:339342, 1990 Giffard RG, Monyer H, Christine CW, et al: Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506:339–342, 1990

    • Search Google Scholar
    • Export Citation
  • 61.

    Gilboe DD, , Kinter D, & Fitzpatrick JH, et al: Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J Neurochem 56:311319, 1991 Gilboe DD, Kinter D, Fitzpatrick JH, et al: Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J Neurochem 56:311–319, 1991

    • Search Google Scholar
    • Export Citation
  • 62.

    Ginsberg MD, , Prado R, & Dietrich WD, et al: Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke 18:570574, 1987 Ginsberg MD, Prado R, Dietrich WD, et al: Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke 18:570–574, 1987

    • Search Google Scholar
    • Export Citation
  • 63.

    Godfraind T, , Miller R, & Wibo M, et al: Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321416, 1986 Godfraind T, Miller R, Wibo M, et al: Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321–416, 1986

    • Search Google Scholar
    • Export Citation
  • 64.

    Gotoh O, , Mohamed AA, & McCulloch J, et al: Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:321331, 1986 Gotoh O, Mohamed AA, McCulloch J, et al: Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:321–331, 1986

    • Search Google Scholar
    • Export Citation
  • 65.

    Gotti B, , Benavides J, & MacKenzie ET, et al: The pharmacotherapy of focal cortical ischaemia in the mouse. Brain Res 522:290307, 1990 Gotti B, Benavides J, MacKenzie ET, et al: The pharmacotherapy of focal cortical ischaemia in the mouse. Brain Res 522:290–307, 1990

    • Search Google Scholar
    • Export Citation
  • 66.

    Gotti B, , Duverger D, & Bertin J, et al: Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther 247:12111221, 1988 Gotti B, Duverger D, Bertin J, et al: Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther 247:1211–1221, 1988

    • Search Google Scholar
    • Export Citation
  • 67.

    Grinstein S, , Cohen S, & Rothstein A: Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol 83:341369, 1984 Grinstein S, Cohen S, Rothstein A: Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol 83:341–369, 1984

    • Search Google Scholar
    • Export Citation
  • 68.

    Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676683, 1986 Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676–683, 1986

    • Search Google Scholar
    • Export Citation
  • 69.

    Hall ED, & Braughler JM: Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad Biol Med 6:303313, 1989 Hall ED, Braughler JM: Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad Biol Med 6:303–313, 1989

    • Search Google Scholar
    • Export Citation
  • 70.

    Hall ED, , Pazara KE, & Braughler JM: Effects of tirilazad mesylate on postischemic brain lipid peroxidase and recovery of extracellular calcium in gerbils. Stroke 22:361366, 1991 Hall ED, Pazara KE, Braughler JM: Effects of tirilazad mesylate on postischemic brain lipid peroxidase and recovery of extracellular calcium in gerbils. Stroke 22:361–366, 1991

    • Search Google Scholar
    • Export Citation
  • 71.

    Halliwell B: Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzhiemer's disease, traumatic injury or stroke? Acta Neurol Scand 80 (Suppl 126):2333, 1989 Halliwell B: Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzhiemer's disease, traumatic injury or stroke? Acta Neurol Scand 80 (Suppl 126):23–33, 1989

    • Search Google Scholar
    • Export Citation
  • 72.

    Halliwell B: Superoxide, iron, vascular endothelium and reperfusion injury. Free Rad Res Commun 5:315318, 1989 Halliwell B: Superoxide, iron, vascular endothelium and reperfusion injury. Free Rad Res Commun 5:315–318, 1989

    • Search Google Scholar
    • Export Citation
  • 73.

    Halliwell B, & Gutteridge J: The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89193, 1985 Halliwell B, Gutteridge J: The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89–193, 1985

    • Search Google Scholar
    • Export Citation
  • 74.

    Hara H, , Onodera H, & Yoshidomi M, et al: Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat. J Cereb Blood Flow Metab 10:646653, 1990 Hara H, Onodera H, Yoshidomi M, et al: Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat. J Cereb Blood Flow Metab 10:646–653, 1990

    • Search Google Scholar
    • Export Citation
  • 75.

    Harlan J: Neutrophil-mediated vascular injury. Acta Med Scand Suppl 715:123129, 1987 Harlan J: Neutrophil-mediated vascular injury. Acta Med Scand Suppl 715:123–129, 1987

    • Search Google Scholar
    • Export Citation
  • 76.

    Harris RJ, , Symon L, & Branston NM, et al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203209, 1981 Harris RJ, Symon L, Branston NM, et al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209, 1981

    • Search Google Scholar
    • Export Citation
  • 77.

    Hillered L, , Smith ML, & Siesjö BK: Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J Cereb Blood Flow Metab 5:259266, 1985 Hillered L, Smith ML, Siesjö BK: Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J Cereb Blood Flow Metab 5:259–266, 1985

    • Search Google Scholar
    • Export Citation
  • 78.

    Imaizumi S, , Woolworth V, & Fishman RA, et al: Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke 21:13121317, 1990 Imaizumi S, Woolworth V, Fishman RA, et al: Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke 21:1312–1317, 1990

    • Search Google Scholar
    • Export Citation
  • 79.

    Irisawa H, & Sato R: Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res 59:348355, 1986 Irisawa H, Sato R: Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res 59:348–355, 1986

    • Search Google Scholar
    • Export Citation
  • 80.

    Jacewicz M, , Brint S, & Tanabe J, et al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:8996, 1990 Jacewicz M, Brint S, Tanabe J, et al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:89–96, 1990

    • Search Google Scholar
    • Export Citation
  • 81.

    Jarasch ED, , Bruder G, & Heid HW: Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand Suppl 548:3946, 1986 Jarasch ED, Bruder G, Heid HW: Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand Suppl 548:39–46, 1986

    • Search Google Scholar
    • Export Citation
  • 82.

    Jean T, , Frelin C, & Vigne P, et al: The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur J Biochem 160:211219, 1986 Jean T, Frelin C, Vigne P, et al: The Na+/H+ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur J Biochem 160:211–219, 1986

    • Search Google Scholar
    • Export Citation
  • 83.

    Johnson JW, & Ascher P: Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529531, 1987 (Letter) Johnson JW, Ascher P: Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531, 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 84.

    Jørgensen MB, , Deckert J, & Wright DC, et al: Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global cerebral ischemia: an in situ hybridization study. Brain Res 484:393398, 1989 Jørgensen MB, Deckert J, Wright DC, et al: Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global cerebral ischemia: an in situ hybridization study. Brain Res 484:393–398, 1989

    • Search Google Scholar
    • Export Citation
  • 85.

    Kennedy MB: Regulation of neuronal function by calcium. Trends Neurosci 12:417424, 1989 Kennedy MB: Regulation of neuronal function by calcium. Trends Neurosci 12:417–424, 1989

    • Search Google Scholar
    • Export Citation
  • 86.

    Kiwak KJ, , Moskowitz MA, & Levine L: Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury. J Neurosurg 62:865869, 1985 Kiwak KJ, Moskowitz MA, Levine L: Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury. J Neurosurg 62:865–869, 1985

    • Search Google Scholar
    • Export Citation
  • 87.

    Kochanek PM, , Dutka AJ, & Hallenbeck JM: Indomethacin, prostacyclin, and heparin improve postischemic cerebral blood flow without affecting early postischemic granulocyte accumulation. Stroke 18:634637, 1987 Kochanek PM, Dutka AJ, Hallenbeck JM: Indomethacin, prostacyclin, and heparin improve postischemic cerebral blood flow without affecting early postischemic granulocyte accumulation. Stroke 18:634–637, 1987

    • Search Google Scholar
    • Export Citation
  • 88.

    Kochanek PM, , Dutka AJ, & Kumaroo KK, et al: Effects of prostacyclin, indomethacin, and heparin on cerebral blood flow and platelet adhesion after multifocal ischemia of canine brain. Stroke 19:693699, 1988 Kochanek PM, Dutka AJ, Kumaroo KK, et al: Effects of prostacyclin, indomethacin, and heparin on cerebral blood flow and platelet adhesion after multifocal ischemia of canine brain. Stroke 19:693–699, 1988

    • Search Google Scholar
    • Export Citation
  • 89.

    Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:508516, 1985 Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:508–516, 1985

    • Search Google Scholar
    • Export Citation
  • 90.

    Kontos HA, , Wei EP, & Povlishock JT, et al: Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209:12421245, 1980 Kontos HA, Wei EP, Povlishock JT, et al: Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209:1242–1245, 1980

    • Search Google Scholar
    • Export Citation
  • 91.

    Korthuis RJ, , Granger DK, & Townsley MI, et al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599609, 1985 Korthuis RJ, Granger DK, Townsley MI, et al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599–609, 1985

    • Search Google Scholar
    • Export Citation
  • 92.

    Kucharczyk J, , Mintorovitch J, & Moseley ME, et al: Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology 179:221227, 1991 Kucharczyk J, Mintorovitch J, Moseley ME, et al: Ischemic brain damage: reduction by sodium-calcium ion channel modulator RS-87476. Radiology 179:221–227, 1991

    • Search Google Scholar
    • Export Citation
  • 93.

    Kumar R, , Harvey SAK, & Kester M, et al: Production and effects of platelet-activating factor in the rat brain. Biochem Biophys Acta 963:375383, 1988 Kumar R, Harvey SAK, Kester M, et al: Production and effects of platelet-activating factor in the rat brain. Biochem Biophys Acta 963:375–383, 1988

    • Search Google Scholar
    • Export Citation
  • 94.

    Lee KS, , Frank S, & Vanderklish P, et al: Inhibition of proteolysis projects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:72337237, 1991 Lee KS, Frank S, Vanderklish P, et al: Inhibition of proteolysis projects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:7233–7237, 1991

    • Search Google Scholar
    • Export Citation
  • 95.

    Lindsberg P, , Hallenbeck J, & Feurestein G: Platelet-activating factor in stroke and brain injury. Ann Neurol 30:117129, 1991 Lindsberg P, Hallenbeck J, Feurestein G: Platelet-activating factor in stroke and brain injury. Ann Neurol 30:117–129, 1991

    • Search Google Scholar
    • Export Citation
  • 96.

    Lindsberg PJ, , Yue TL, & Frerichs KU, et al: Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21:14521457, 1990 Lindsberg PJ, Yue TL, Frerichs KU, et al: Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21:1452–1457, 1990

    • Search Google Scholar
    • Export Citation
  • 97.

    Lindvall O, , Ernfors P, & Bengzon J, et al: Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA 89:648652, 1992 Lindvall O, Ernfors P, Bengzon J, et al: Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA 89:648–652, 1992

    • Search Google Scholar
    • Export Citation
  • 98.

    Liu TH, , Beckman JS, & Freeman BA, et al: Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256:H589H593, 1989 Liu TH, Beckman JS, Freeman BA, et al: Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256:H589–H593, 1989

    • Search Google Scholar
    • Export Citation
  • 99.

    Lodge D, & Collingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:2124, 1990 Lodge D, Collingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:21–24, 1990

    • Search Google Scholar
    • Export Citation
  • 100.

    Malenka RC, , Kauer JA, & Perkel DJ, et al: The impact of postsynaptic calcium on synaptic transmission — its role in long-term potentiation. Trends Neurosci 12:444450, 1989 Malenka RC, Kauer JA, Perkel DJ, et al: The impact of postsynaptic calcium on synaptic transmission — its role in long-term potentiation. Trends Neurosci 12:444–450, 1989

    • Search Google Scholar
    • Export Citation
  • 101.

    Manev H, , Costa E, & Wroblewski JT, et al: Abusive stimulation of excitatory amino acid receptors: a strategy to limit neurotoxicity. FASEB J 4:27892797, 1990 Manev H, Costa E, Wroblewski JT, et al: Abusive stimulation of excitatory amino acid receptors: a strategy to limit neurotoxicity. FASEB J 4:2789–2797, 1990

    • Search Google Scholar
    • Export Citation
  • 102.

    Manev H, , Favaron M, & Guidotti A, et al: Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106112, 1989 Manev H, Favaron M, Guidotti A, et al: Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106–112, 1989

    • Search Google Scholar
    • Export Citation
  • 103.

    Marinov M, & Wassmann H: Lack of effect of PN 200-110 on neuronal injury and neurological outcome in middle cerebral artery-occluded rats. Stroke 22:10641067, 1991 Marinov M, Wassmann H: Lack of effect of PN 200-110 on neuronal injury and neurological outcome in middle cerebral artery-occluded rats. Stroke 22:1064–1067, 1991

    • Search Google Scholar
    • Export Citation
  • 104.

    Martz D, , Rayos G, & Schielke GP, et al: Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats. Stroke 20:488494, 1989 Martz D, Rayos G, Schielke GP, et al: Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats. Stroke 20:488–494, 1989

    • Search Google Scholar
    • Export Citation
  • 105.

    Mattson MP: Cellular signaling mechanisms common to the development and degeneration of neuroarchitecture. A review. Mech Ageing Dev 50:103157, 1989 Mattson MP: Cellular signaling mechanisms common to the development and degeneration of neuroarchitecture. A review. Mech Ageing Dev 50:103–157, 1989

    • Search Google Scholar
    • Export Citation
  • 106.

    Mayer ML, & Westbrook GL: Cellular mechanisms underlying excitotoxicity. Trends Neurosci 10:5961, 1987 Mayer ML, Westbrook GL: Cellular mechanisms underlying excitotoxicity. Trends Neurosci 10:59–61, 1987

    • Search Google Scholar
    • Export Citation
  • 107.

    Mayer ML, & Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197276, 1987 Mayer ML, Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276, 1987

    • Search Google Scholar
    • Export Citation
  • 108.

    Mayhan WG, , Sahagun G, & Spector R, et al: Effects of leukotriene C4 on the cerebral microvasculature. Am J Physiol 251:H471H474, 1986 Mayhan WG, Sahagun G, Spector R, et al: Effects of leukotriene C4 on the cerebral microvasculature. Am J Physiol 251:H471–H474, 1986

    • Search Google Scholar
    • Export Citation
  • 109.

    McCord JM: Oxygen-derived free radicals in postishemic tissue injury. N Engl J Med 312:159163, 1985 McCord JM: Oxygen-derived free radicals in postishemic tissue injury. N Engl J Med 312:159–163, 1985

    • Search Google Scholar
    • Export Citation
  • 110.

    McCord JM: Oxygen derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:24022406, 1987 McCord JM: Oxygen derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:2402–2406, 1987

    • Search Google Scholar
    • Export Citation
  • 111.

    Meyer FB, , Anderson RE, & Sundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF, brain pHi, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:97103, 1990 Meyer FB, Anderson RE, Sundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF, brain pHi, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:97–103, 1990

    • Search Google Scholar
    • Export Citation
  • 112.

    Meyer FB, , Anderson RE, & Yaksh TL, et al: Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617626, 1986 Meyer FB, Anderson RE, Yaksh TL, et al: Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617–626, 1986

    • Search Google Scholar
    • Export Citation
  • 113.

    Miller RJ: Multiple calcium channels and neuronal function. Science 235:4652, 1987 Miller RJ: Multiple calcium channels and neuronal function. Science 235:46–52, 1987

    • Search Google Scholar
    • Export Citation
  • 114.

    Minamisawa H, , Terashi A, & Katayama Y, et al: Brain eicosanoid levels in spontaneously hypertensive rats after ischemia with reperfusion: leukotriene C4 as a possible cause of cerebral edema. Stroke 19:372377, 1988 Minamisawa H, Terashi A, Katayama Y, et al: Brain eicosanoid levels in spontaneously hypertensive rats after ischemia with reperfusion: leukotriene C4 as a possible cause of cerebral edema. Stroke 19:372–377, 1988

    • Search Google Scholar
    • Export Citation
  • 115.

    Mohamed AA, , Gotoh O, & Graham DI, et al: Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18:705711, 1985 Mohamed AA, Gotoh O, Graham DI, et al: Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18:705–711, 1985

    • Search Google Scholar
    • Export Citation
  • 116.

    Morgan JI, & Curran T: Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459462, 1989 Morgan JI, Curran T: Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462, 1989

    • Search Google Scholar
    • Export Citation
  • 117.

    Moskowitz MA, , Kiwak KJ, & Hekimian K, et al: Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 224:886889, 1984 Moskowitz MA, Kiwak KJ, Hekimian K, et al: Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion. Science 224:886–889, 1984

    • Search Google Scholar
    • Export Citation
  • 118.

    Myers RE, & Yamaguchi S: Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol 34:6574, 1977 Myers RE, Yamaguchi S: Nervous system effects of cardiac arrest in monkeys. Preservation of vision. Arch Neurol 34:65–74, 1977

    • Search Google Scholar
    • Export Citation
  • 119.

    Nakagomi T, , Sasaki T, & Kirino T, et al: Effect of cyclo-oxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke 20:925929, 1989 Nakagomi T, Sasaki T, Kirino T, et al: Effect of cyclo-oxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke 20:925–929, 1989

    • Search Google Scholar
    • Export Citation
  • 120.

    Nakayama H, , Ginsberg MD, & Dietrich WD: (S)-Emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38:16671673, 1988 Nakayama H, Ginsberg MD, Dietrich WD: (S)-Emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38:1667–1673, 1988

    • Search Google Scholar
    • Export Citation
  • 121.

    Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:7985, 1987 Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79–85, 1987

    • Search Google Scholar
    • Export Citation
  • 122.

    Nedergaard M, & Astrup J: Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 6:607615, 1986 Nedergaard M, Astrup J: Infarct rim: effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 6:607–615, 1986

    • Search Google Scholar
    • Export Citation
  • 123.

    Nedergaard M, & Diemer NH: Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:131137, 1987 Nedergaard M, Diemer NH: Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:131–137, 1987

    • Search Google Scholar
    • Export Citation
  • 124.

    Nedergaard M, & Hansen AJ: Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395398, 1988 Nedergaard M, Hansen AJ: Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449:395–398, 1988

    • Search Google Scholar
    • Export Citation
  • 125.

    Nellgård B, & Wieloch T: Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 12:211, 1992 Nellgård B, Wieloch T: Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 12:2–11, 1992

    • Search Google Scholar
    • Export Citation
  • 126.

    Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693698, 1984 Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698, 1984

    • Search Google Scholar
    • Export Citation
  • 127.

    Nishizuka Y: Studies and perspectives of protein kinase C. Science 233:305312, 1986 Nishizuka Y: Studies and perspectives of protein kinase C. Science 233:305–312, 1986

    • Search Google Scholar
    • Export Citation
  • 128.

    Nordström CH, , Rehncrona S, & Siesjö BK: Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anaesthetized with nitrous oxide or phenobarbital. J Neurochem 30:479486, 1978 Nordström CH, Rehncrona S, Siesjö BK: Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anaesthetized with nitrous oxide or phenobarbital. J Neurochem 30:479–486, 1978

    • Search Google Scholar
    • Export Citation
  • 129.

    Oberpichler H, , Sauer D, & Rossberg C, et al: PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cereb Blood Flow Metab 10:133135, 1990 Oberpichler H, Sauer D, Rossberg C, et al: PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cereb Blood Flow Metab 10:133–135, 1990

    • Search Google Scholar
    • Export Citation
  • 130.

    Oliver CN, , Starke-Reed PE, & Stadtman ER, et al: Oxidative damage to brain proteins, loss of glutamate synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:51445147, 1990 Oliver CN, Starke-Reed PE, Stadtman ER, et al: Oxidative damage to brain proteins, loss of glutamate synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147, 1990

    • Search Google Scholar
    • Export Citation
  • 131.

    Onodera H, , Kogure K, & Ono Y, et al: Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci Lett 98:101104, 1989 Onodera H, Kogure K, Ono Y, et al: Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci Lett 98:101–104, 1989

    • Search Google Scholar
    • Export Citation
  • 132.

    Orrenius S, , McConkey D, & Jones D, et al: Ca2+-activated mechanisms in toxicity and programmed cell death. ISI Atlas Sci: Pharmacol 2:319324, 1988 Orrenius S, McConkey D, Jones D, et al: Ca2+-activated mechanisms in toxicity and programmed cell death. ISI Atlas Sci: Pharmacol 2:319–324, 1988

    • Search Google Scholar
    • Export Citation
  • 133.

    Papagapiou MP, & Auer RN: Regional neuroprotective effects of the NMDA receptor antagonist MK-801 (dizocilpine) in hypoglycemic brain damage. J Cereb Blood Flow Metab 10:270276, 1990 Papagapiou MP, Auer RN: Regional neuroprotective effects of the NMDA receptor antagonist MK-801 (dizocilpine) in hypoglycemic brain damage. J Cereb Blood Flow Metab 10:270–276, 1990

    • Search Google Scholar
    • Export Citation
  • 134.

    Patt A, , Harken AH, & Burton LK, et al: Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81:15561562, 1988 Patt A, Harken AH, Burton LK, et al: Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81:1556–1562, 1988

    • Search Google Scholar
    • Export Citation
  • 135.

    Pettigrew LC, , Grotta JC, & Rhoades HM, et al: Effect of thromboxane synthase inhibition on eicosanoid levels and blood flow in ischemic rat brain. Stroke 20:627632, 1989 Pettigrew LC, Grotta JC, Rhoades HM, et al: Effect of thromboxane synthase inhibition on eicosanoid levels and blood flow in ischemic rat brain. Stroke 20:627–632, 1989

    • Search Google Scholar
    • Export Citation
  • 136.

    Piomelli D, , Volterra A, & Dale N, et al: Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328:3843, 1987 Piomelli D, Volterra A, Dale N, et al: Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328:38–43, 1987

    • Search Google Scholar
    • Export Citation
  • 137.

    Plum F: What causes infarction in ischemic brain? The Robert Wartenberg lecture. Neurology 33:222233, 1983 Plum F: What causes infarction in ischemic brain? The Robert Wartenberg lecture. Neurology 33:222–233, 1983

    • Search Google Scholar
    • Export Citation
  • 138.

    Rehncrona S, , Hauge HN, & Siesjö BK: Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9:6570, 1989 Rehncrona S, Hauge HN, Siesjö BK: Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9:65–70, 1989

    • Search Google Scholar
    • Export Citation
  • 139.

    Reynolds IJ, , Wagner JA, & Snyder SH, et al: Brain voltage-sensitive calcium channel subtypes differentiated by ω-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:88048807, 1986 Reynolds IJ, Wagner JA, Snyder SH, et al: Brain voltage-sensitive calcium channel subtypes differentiated by ω-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:8804–8807, 1986

    • Search Google Scholar
    • Export Citation
  • 140.

    Rothman SM, & Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105111, 1986 Rothman SM, Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111, 1986

    • Search Google Scholar
    • Export Citation
  • 141.

    Samuelsson B: Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568575, 1983 Samuelsson B: Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575, 1983

    • Search Google Scholar
    • Export Citation
  • 142.

    Sauter A, & Rudin M: Treatment of hypertension with isradipine reduces infarct size following stroke in laboratory animals. Am J Med 86:130133, 1989 Sauter A, Rudin M: Treatment of hypertension with isradipine reduces infarct size following stroke in laboratory animals. Am J Med 86:130–133, 1989

    • Search Google Scholar
    • Export Citation
  • 143.

    Seubert P, , Lee K, & Lynch G: Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492:366370, 1989 Seubert P, Lee K, Lynch G: Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res 492:366–370, 1989

    • Search Google Scholar
    • Export Citation
  • 144.

    Sheardown MJ, , Nielsen , & Hansen AJ, et al: 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571574, 1990 Sheardown MJ, Nielsen EØ, Hansen AJ, et al: 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574, 1990

    • Search Google Scholar
    • Export Citation
  • 145.

    Shohami E, , Rosenthal J, & Lavy S: The effect of incomplete cerebral ischemia on prostaglandin levels in rat brain. Stroke 13:494499, 1982 Shohami E, Rosenthal J, Lavy S: The effect of incomplete cerebral ischemia on prostaglandin levels in rat brain. Stroke 13:494–499, 1982

    • Search Google Scholar
    • Export Citation
  • 146.

    Siemkowicz E, & Hansen AJ: Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemic rats. Acta Neurol Scand 58:18, 1978 Siemkowicz E, Hansen AJ: Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemic rats. Acta Neurol Scand 58:1–8, 1978

    • Search Google Scholar
    • Export Citation
  • 147.

    Siesjö B: The role of calcium in cell death, in Price D, , Aguayo A, & Thoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons, 1992, pp 3559 Siesjö B: The role of calcium in cell death, in Price D, Aguayo A, Thoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons, 1992, pp 35–59

    • Search Google Scholar
    • Export Citation
  • 148.

    Siesjö B, , Agardh CD, & Bengtsson F, et al: Arachidonic acid metabolism in seizures. Ann NY Acad Sci 559:323339, 1989 Siesjö B, Agardh CD, Bengtsson F, et al: Arachidonic acid metabolism in seizures. Ann NY Acad Sci 559:323–339, 1989

    • Search Google Scholar
    • Export Citation
  • 149.

    Siesjö B, , Ekholm A, & Katsura K, et al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel blockade, in Krieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 7988 Siesjö B, Ekholm A, Katsura K, et al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel blockade, in Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 79–88

    • Search Google Scholar
    • Export Citation
  • 150.

    Siesjö B, & Katsura K: Ischemic brain damage: focus on lipid mediators, in Bazan N, , Toffano G, & Murphy M (eds): Neurobiology of Essential Fatty Acids. New York: Plenum Press, (In press, 1992) Siesjö B, Katsura K: Ischemic brain damage: focus on lipid mediators, in Bazan N, Toffano G, Murphy M (eds): Neurobiology of Essential Fatty Acids. New York: Plenum Press, (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 151.

    Siesjö B: , Lundgren J, & Pahlmark K: The role of free radicals in ischemic brain damage: a hypothesis, inKrieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 319323 Siesjö B: Lundgren J, Pahlmark K: The role of free radicals in ischemic brain damage: a hypothesis, in Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 319–323

    • Search Google Scholar
    • Export Citation
  • 152.

    Siesjö BK: Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Prog Brain Res 63:121154, 1985 Siesjö BK: Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Prog Brain Res 63:121–154, 1985

    • Search Google Scholar
    • Export Citation
  • 153.

    Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:3188, 1988 Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:31–88, 1988

    • Search Google Scholar
    • Export Citation
  • 154.

    Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155185, 1981 Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185, 1981

    • Search Google Scholar
    • Export Citation
  • 155.

    Siesjö BK: Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638661, 1988 Siesjö BK: Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638–661, 1988

    • Search Google Scholar
    • Export Citation
  • 156.

    Siesjö BK: Hypoglycemia, brain metabolism, and brain damage. Diabetes/Metab Rev 4:113144, 1988 Siesjö BK: Hypoglycemia, brain metabolism, and brain damage. Diabetes/Metab Rev 4:113–144, 1988

    • Search Google Scholar
    • Export Citation
  • 157.

    Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954963, 1988 Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954–963, 1988

    • Search Google Scholar
    • Export Citation
  • 158.

    Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. I. Pathophysiology. J Neurosurg 77:169184, 1992 Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. I. Pathophysiology. J Neurosurg 77:169–184, 1992

    • Search Google Scholar
    • Export Citation
  • 159.

    Siesjö BK, , Agardh CD, & Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165211, 1989 Siesjö BK, Agardh CD, Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211, 1989

    • Search Google Scholar
    • Export Citation
  • 160.

    Siesjö BK, , Bendek G, & Koide T, et al: Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 5:253258, 1985 Siesjö BK, Bendek G, Koide T, et al: Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 5:253–258, 1985

    • Search Google Scholar
    • Export Citation
  • 161.

    Siesjö BK, & Bengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127140, 1989 Siesjö BK, Bengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140, 1989

    • Search Google Scholar
    • Export Citation
  • 162.

    Siesjö BK, , Bengtsson F, & Grampp W, et al: Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234251, 1989 Siesjö BK, Bengtsson F, Grampp W, et al: Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234–251, 1989

    • Search Google Scholar
    • Export Citation
  • 163.

    Siesjö BK, , Ekholm A, & Katsura K, et al: Acid-base changes during complete brain ischemia. Stroke 21 (Suppl):III194III199, 1990 Siesjö BK, Ekholm A, Katsura K, et al: Acid-base changes during complete brain ischemia. Stroke 21 (Suppl):III194–III199, 1990

    • Search Google Scholar
    • Export Citation
  • 164.

    Siesjö BK, & Wieloch T: Cerebral metabolism in ischaemia: neurochemical basis for therapy. Br J Anaesth 57:4762, 1985 Siesjö BK, Wieloch T: Cerebral metabolism in ischaemia: neurochemical basis for therapy. Br J Anaesth 57:47–62, 1985

    • Search Google Scholar
    • Export Citation
  • 165.

    Siman R, & Noszek JC: Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279287, 1988 Siman R, Noszek JC: Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1:279–287, 1988

    • Search Google Scholar
    • Export Citation
  • 166.

    Smith ML, , Kalimo H, & Warner DS, et al: Morphological lesions in the brain preceding the development of postishemic seizures. Acta Neuropathol 76:253264, 1988 Smith ML, Kalimo H, Warner DS, et al: Morphological lesions in the brain preceding the development of postishemic seizures. Acta Neuropathol 76:253–264, 1988

    • Search Google Scholar
    • Export Citation
  • 167.

    Smith SJ: Progress on LTP at hippocampal synapses: a post-synaptic Ca2+ trigger for memory storage? Trends Neurosci 10:142144, 1987 Smith SJ: Progress on LTP at hippocampal synapses: a post-synaptic Ca2+ trigger for memory storage? Trends Neurosci 10:142–144, 1987

    • Search Google Scholar
    • Export Citation
  • 168.

    Snyder F: Biochemistry of platelet-activating factor: a unique class of biologically active phospholipids (42389). Proc Soc Exp Biol Med 190:125135, 1989 Snyder F: Biochemistry of platelet-activating factor: a unique class of biologically active phospholipids (42389). Proc Soc Exp Biol Med 190:125–135, 1989

    • Search Google Scholar
    • Export Citation
  • 169.

    Spedding M, , Kilpatrick AT, & Alps BT, et al: Activators and inactivators of calcium channels: effects in the central nervous system. Fund Clin Pharmacol 3 (Suppl):329, 1989 Spedding M, Kilpatrick AT, Alps BT, et al: Activators and inactivators of calcium channels: effects in the central nervous system. Fund Clin Pharmacol 3 (Suppl):3–29, 1989

    • Search Google Scholar
    • Export Citation
  • 170.

    Spinnewyn B, , Blavet N, & Clostre F, et al: Involvement of platelet-activating factor (PAF) in cerebral post-ischemic phase in Mongolian gerbils. Prostaglandins 34:337349, 1987 Spinnewyn B, Blavet N, Clostre F, et al: Involvement of platelet-activating factor (PAF) in cerebral post-ischemic phase in Mongolian gerbils. Prostaglandins 34:337–349, 1987

    • Search Google Scholar
    • Export Citation
  • 171.

    Steen PA, , Gisvold SE, & Milde JH, et al: Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62:406414, 1985 Steen PA, Gisvold SE, Milde JH, et al: Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 62:406–414, 1985

    • Search Google Scholar
    • Export Citation
  • 172.

    Strong AJ, , Tomlinson BE, & Venables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:755758, 1984 (Letter) Strong AJ, Tomlinson BE, Venables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:755–758, 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 173.

    Strong AJ, , Tomlinson BE, & Venables GS, et al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97108, 1983 Strong AJ, Tomlinson BE, Venables GS, et al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97–108, 1983

    • Search Google Scholar
    • Export Citation
  • 174.

    Strong AJ, , Venables GS, & Gibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:8696, 1983 Strong AJ, Venables GS, Gibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:86–96, 1983

    • Search Google Scholar
    • Export Citation
  • 175.

    Tang CM, , Dichter M, & Morad M: Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 87:64456449, 1990 Tang CM, Dichter M, Morad M: Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 87:6445–6449, 1990

    • Search Google Scholar
    • Export Citation
  • 176.

    Traynelis SF, & Cull-Candy SG: Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347350, 1990 Traynelis SF, Cull-Candy SG: Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350, 1990

    • Search Google Scholar
    • Export Citation
  • 177.

    Tsien RW, , Lipscombe D, & Madison DV, et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431438, 1988 Tsien RW, Lipscombe D, Madison DV, et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438, 1988

    • Search Google Scholar
    • Export Citation
  • 178.

    Uematsu D, , Greenberg JH, & Hickey WF, et al: Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 20:15311537, 1989 Uematsu D, Greenberg JH, Hickey WF, et al: Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 20:1531–1537, 1989

    • Search Google Scholar
    • Export Citation
  • 179.

    Uematsu D, , Greenberg JH, & Reivich M, et al: Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia. J Cereb Blood Flow Metab 9:149155, 1989 Uematsu D, Greenberg JH, Reivich M, et al: Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia. J Cereb Blood Flow Metab 9:149–155, 1989

    • Search Google Scholar
    • Export Citation
  • 180.

    Uematsu D, , Greenberg JH, & Reivich M, et al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:367374, 1988 Uematsu D, Greenberg JH, Reivich M, et al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:367–374, 1988

    • Search Google Scholar
    • Export Citation
  • 181.

    Unterberg A, , Wahl M, & Baethmann A: Effects of free radicals on permeability and vasomotor response of cerebral vessels. Acta Neuropathol 76:238244, 1988 Unterberg A, Wahl M, Baethmann A: Effects of free radicals on permeability and vasomotor response of cerebral vessels. Acta Neuropathol 76:238–244, 1988

    • Search Google Scholar
    • Export Citation
  • 182.

    Unterberg A, , Wahl M, & Hammersen F, et al: Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol 73:209219, 1987 Unterberg A, Wahl M, Hammersen F, et al: Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol 73:209–219, 1987

    • Search Google Scholar
    • Export Citation
  • 183.

    Vaccarino F, , Guidotti A, & Costa E: Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci USA 84:87078711, 1987 Vaccarino F, Guidotti A, Costa E: Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc Natl Acad Sci USA 84:8707–8711, 1987

    • Search Google Scholar
    • Export Citation
  • 184.

    Venables GS, , Miller SA, & Gibson G, et al: The effects of hyperglycemia on changes during reperfusion following focal cerebral ischaemia in the cat. J Neurol Neurosurg Psychiatry 48:663669, 1985 Venables GS, Miller SA, Gibson G, et al: The effects of hyperglycemia on changes during reperfusion following focal cerebral ischaemia in the cat. J Neurol Neurosurg Psychiatry 48:663–669, 1985

    • Search Google Scholar
    • Export Citation
  • 185.

    Walker V, & Pickard JD: Prostaglandins, thromboxane, leukotrienes and the cerebral circulation in health and disease. Adv Tech Stand Neurosurg 12:390, 1985 Walker V, Pickard JD: Prostaglandins, thromboxane, leukotrienes and the cerebral circulation in health and disease. Adv Tech Stand Neurosurg 12:3–90, 1985

    • Search Google Scholar
    • Export Citation
  • 186.

    Warner DS, , Smith ML, & Siesjö BK: Ischemia in normo- and hyperglycemic rats: effects on brain waves and electrolyes. Stroke 18:464471, 1987 Warner DS, Smith ML, Siesjö BK: Ischemia in normo- and hyperglycemic rats: effects on brain waves and electrolyes. Stroke 18:464–471, 1987

    • Search Google Scholar
    • Export Citation
  • 187.

    Watkins JC, & Olverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265272, 1987 Watkins JC, Olverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272, 1987

    • Search Google Scholar
    • Export Citation
  • 188.

    Watson BD: Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. Prog Brain Res (In press, 1992) Watson BD: Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. Prog Brain Res (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 189.

    Watson BD, , Busto R, & Goldberg WJ, et al: Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42:268274, 1984 Watson BD, Busto R, Goldberg WJ, et al: Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42:268–274, 1984

    • Search Google Scholar
    • Export Citation
  • 190.

    Werns S, & Lucchesi B: Free radicals and ischemic tissue injury. Trends Pharmacol Sci 11:161166, 1990 Werns S, Lucchesi B: Free radicals and ischemic tissue injury. Trends Pharmacol Sci 11:161–166, 1990

    • Search Google Scholar
    • Export Citation
  • 191.

    Westerberg E, , Kehr J, & Ungerstedt U, et al: The NMDA-antagonist MK-801 reduces extracellular amino acid levels during hypoglycemia and prevents striatal damage. Neurosci Res Commun 3:151158, 1988 Westerberg E, Kehr J, Ungerstedt U, et al: The NMDA-antagonist MK-801 reduces extracellular amino acid levels during hypoglycemia and prevents striatal damage. Neurosci Res Commun 3:151–158, 1988

    • Search Google Scholar
    • Export Citation
  • 192.

    Wieloch T: Hypoglycemia-induced neuronal damage prevented by N-methyl-D-aspartate antagonist. Science 230:681683, 1985 Wieloch T: Hypoglycemia-induced neuronal damage prevented by N-methyl-D-aspartate antagonist. Science 230:681–683, 1985

    • Search Google Scholar
    • Export Citation
  • 193.

    Wieloch T, , Bergstedt K, & Hu BR: Protein phosphorylation and regulation of mRNA translation following cerebral ischemia. Prog Brain Res (In press, 1992) Wieloch T, Bergstedt K, Hu BR: Protein phosphorylation and regulation of mRNA translation following cerebral ischemia. Prog Brain Res (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 194.

    Wieloch T, , Cardell M, & Bingren H, et al: Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia. J Neurochem 56:12271235, 1991 Wieloch T, Cardell M, Bingren H, et al: Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia. J Neurochem 56:1227–1235, 1991

    • Search Google Scholar
    • Export Citation
  • 195.

    Wieloch T, & Siesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:269277, 1982 Wieloch T, Siesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:269–277, 1982

    • Search Google Scholar
    • Export Citation
  • 196.

    Wolfe LS: Eicosanoids: prostaglandins, thromboxanes, leukotrienes and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 38:114, 1982 Wolfe LS: Eicosanoids: prostaglandins, thromboxanes, leukotrienes and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 38:1–14, 1982

    • Search Google Scholar
    • Export Citation
  • 197.

    Youdim MBH (ed): Brain Iron: Neurochemical and Behavioral Aspects. London: Taylor & Francis, 1988 Youdim MBH (ed): Brain Iron: Neurochemical and Behavioral Aspects. London: Taylor & Francis, 1988

    • Search Google Scholar
    • Export Citation
  • 198.

    Young W, , Wojak JC, & DeCrescito V: 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19:10131019, 1988 Young W, Wojak JC, DeCrescito V: 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19:1013–1019, 1988

    • Search Google Scholar
    • Export Citation
  • 199.

    Zasslow MA, , Pearl RG, & Shuer LM, et al: Hyperglycemia decreases acute neuronal ischemic changes after middle cerebral artery occlusion in cats. Stroke 20:519523, 1989 Zasslow MA, Pearl RG, Shuer LM, et al: Hyperglycemia decreases acute neuronal ischemic changes after middle cerebral artery occlusion in cats. Stroke 20:519–523, 1989

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 668 252 13
Full Text Views 1313 12 2
PDF Downloads 136 5 1
EPUB Downloads 0 0 0