Pathophysiology and treatment of focal cerebral ischemia

Part I: Pathophysiology

View More View Less
  • 1 Laboratory for Experimental Brain Research, Experimental Research Center, Lund University Hospital, Lund, Sweden
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

✓ This article examines the pathophysiology of lesions caused by focal cerebral ischemia. Ischemia due to middle cerebral artery occlusion encompasses a densely ischemic focus and a less densely ischemic penumbral zone. Cells in the focus are usually doomed unless reperfusion is quickly instituted. In contrast, although the penumbra contains cells “at risk.” these may remain viable for at least 4 to 8 hours. Cells in the penumbra may be salvaged by reperfusion or by drugs that prevent an extension of the infarction into the penumbral zone. Factors responsible for such an extension probably include acidosis, edema, K+/Ca++ transients, and inhibition of protein synthesis.

Central to any discussion of the pathophysiology of ischemic lesions is energy depletion. This is because failure to maintain cellular adenosine triphosphate (ATP) levels leads to degradation of macromolecules of key importance to membrane and cytoskeletal integrity, to loss of ion homeostasis, involving cellular accumulation of Ca++, Na+, and Cl, with osmotically obligated water, and to production of metabolic acids with a resulting decrease in intra- and extracellular pH.

In all probability, loss of cellular calcium homeostasis plays an important role in the pathogenesis of ischemic cell damage. The resulting rise in the free cytosolic intracellular calcium concentration (Ca++) depends on both the loss of calcium pump function (due to ATP depletion), and the rise in membrane permeability to calcium. In ischemia, calcium influx occurs via multiple pathways. Some of the most important routes depend on activation of receptors by glutamate and associated excitatory amino acids released from depolarized presynaptic endings. However, ischemia also interferes with the intracellular sequestration and binding of calcium, thereby contributing to the rise in intracellular Ca++.

A second key event in the ischemic tissue is activation of anaerobic glucolysis. The main reason for this activation is inhibition of mitochondrial metabolism by lack of oxygen; however, other factors probably contribute. For example, there is a complex interplay between loss of cellular calcium homeostasis and acidosis. On the one hand, a rise in intracellular Ca++ is apt to cause mitochondrial accumulation of calcium. This must interfere with ATP production and enhance anaerobic glucolysis. On the other hand, acidosis must interfere with calcium binding, thereby contributing to the rise in intracellular Ca++.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1.

    Anderson RE, & Sundt TM Jr: Brain pH in focal cerebral ischemia and the protective effects of barbiturate anesthesia. J Cereb Blood Flow Metab 3:493497, 1983 Anderson RE, Sundt TM Jr: Brain pH in focal cerebral ischemia and the protective effects of barbiturate anesthesia. J Cereb Blood Flow Metab 3:493–497, 1983

    • Search Google Scholar
    • Export Citation
  • 2.

    Astrup J, , Siesjö BK, & Symon L: Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12:723725, 1981 Astrup J, Siesjö BK, Symon L: Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12:723–725, 1981

    • Search Google Scholar
    • Export Citation
  • 3.

    Astrup J, , Symon L, & Branston NM, et al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:5157, 1977 Astrup J, Symon L, Branston NM, et al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57, 1977

    • Search Google Scholar
    • Export Citation
  • 4.

    Bazan N: Neuronal cell signal transduction and second messengers in cerebral ischemia, in Krieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 391396 Bazan N: Neuronal cell signal transduction and second messengers in cerebral ischemia, in Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 391–396

    • Search Google Scholar
    • Export Citation
  • 5.

    Bazan N, , Squinto S, & Braquet P, et al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:12361242, 1991 Bazan N, Squinto S, Braquet P, et al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:1236–1242, 1991

    • Search Google Scholar
    • Export Citation
  • 6.

    Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72:317335, 1976 Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72:317–335, 1976

    • Search Google Scholar
    • Export Citation
  • 7.

    Behar KL, , Rothman DL, & Hossmann KA: NMR Spectroscopic investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metab 9:655665, 1989 Behar KL, Rothman DL, Hossmann KA: NMR Spectroscopic investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metab 9:655–665, 1989

    • Search Google Scholar
    • Export Citation
  • 8.

    Ben-An Y: Hippocampal potassium ATP channels and anoxia: presynaptic postsynaptic or both? Trends Neurosci 13:409410, 1990 (Letter) Ben-An Y: Hippocampal potassium ATP channels and anoxia: presynaptic postsynaptic or both? Trends Neurosci 13:409–410, 1990 (Letter)

    • Search Google Scholar
    • Export Citation
  • 9.

    Ben-Ari Y, , Krnjević K, & Crépel V: Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 37:5560, 1990 Ben-Ari Y, Krnjević K, Crépel V: Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 37:55–60, 1990

    • Search Google Scholar
    • Export Citation
  • 10.

    Berridge MJ: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345360, 1984 Berridge MJ: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360, 1984

    • Search Google Scholar
    • Export Citation
  • 11.

    Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159193, 1987 Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193, 1987

    • Search Google Scholar
    • Export Citation
  • 12.

    Blaustein MP: Calcium transport and buffering in neurons. Trends Neurosci 11:438443, 1988 Blaustein MP: Calcium transport and buffering in neurons. Trends Neurosci 11:438–443, 1988

    • Search Google Scholar
    • Export Citation
  • 13.

    Bolander HG, , Persson L, & Hillered L, et al: Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20:930937, 1989 Bolander HG, Persson L, Hillered L, et al: Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20:930–937, 1989

    • Search Google Scholar
    • Export Citation
  • 14.

    Bolas N, , Rajagopalan B, & Mitsumori F, et al: Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. Stroke 19:608614, 1988 Bolas N, Rajagopalan B, Mitsumori F, et al: Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. Stroke 19:608–614, 1988

    • Search Google Scholar
    • Export Citation
  • 15.

    Branston NM, , Strong AJ, & Symon L: Extracellular potassium activity, evoked potential and tissue blood flow. J Neurol Sci 32:305321, 1977 Branston NM, Strong AJ, Symon L: Extracellular potassium activity, evoked potential and tissue blood flow. J Neurol Sci 32:305–321, 1977

    • Search Google Scholar
    • Export Citation
  • 16.

    Branston NM, , Symon L, & Crockard HA, et al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195208, 1974 Branston NM, Symon L, Crockard HA, et al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195–208, 1974

    • Search Google Scholar
    • Export Citation
  • 17.

    Brierley JB, & Graham DI: Hypoxia and vascular disorders of the central nervous system, in Adams JH, , Corsellis JAN, & Duchen LW (eds): Greenfield's Neuropathology, ed 4. New York: John Wiley & Sons, 1984, pp 125207 Brierley JB, Graham DI: Hypoxia and vascular disorders of the central nervous system, in Adams JH, Corsellis JAN, Duchen LW (eds): Greenfield's Neuropathology, ed 4. New York: John Wiley & Sons, 1984, pp 125–207

    • Search Google Scholar
    • Export Citation
  • 18.

    Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56:395433, 1987 Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433, 1987

    • Search Google Scholar
    • Export Citation
  • 19.

    Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:105147, 1990 Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:105–147, 1990

    • Search Google Scholar
    • Export Citation
  • 20.

    Chopp M, , Frinak S, & Walton DR, et al: Intracellular acidosis during and after cerebral ischemia: in vivo nuclear magnetic resonance study of hyperglycemia in cats. Stroke 18:919923, 1987 Chopp M, Frinak S, Walton DR, et al: Intracellular acidosis during and after cerebral ischemia: in vivo nuclear magnetic resonance study of hyperglycemia in cats. Stroke 18:919–923, 1987

    • Search Google Scholar
    • Export Citation
  • 21.

    Chopp M, , Welch KMA, & Tidwell CD, et al: Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in cats. Stroke 19:13831387, 1988 Chopp M, Welch KMA, Tidwell CD, et al: Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in cats. Stroke 19:1383–1387, 1988

    • Search Google Scholar
    • Export Citation
  • 22.

    Cotman C, & Monaghan D: Multiple excitatory amino acid receptor regulation of intracellular Ca2+. Implications for aging and Alzheimer's disease. Ann NY Acad Sci 568:138148, 1989 Cotman C, Monaghan D: Multiple excitatory amino acid receptor regulation of intracellular Ca2+. Implications for aging and Alzheimer's disease. Ann NY Acad Sci 568:138–148, 1989

    • Search Google Scholar
    • Export Citation
  • 23.

    Crowell R, , Marcoux FW, & DeGirolami U: Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology 31:12951302, 1981 Crowell R, Marcoux FW, DeGirolami U: Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology 31:1295–1302, 1981

    • Search Google Scholar
    • Export Citation
  • 24.

    Crowell RM, , Olsson Y, & Klatzo I, et al: Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke 1:439448, 1970 Crowell RM, Olsson Y, Klatzo I, et al: Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke 1:439–448, 1970

    • Search Google Scholar
    • Export Citation
  • 25.

    DeGirolami U, , Crowell RM, & Marcoux FW: Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol 43:5771, 1984 DeGirolami U, Crowell RM, Marcoux FW: Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol 43:57–71, 1984

    • Search Google Scholar
    • Export Citation
  • 26.

    Duchen MR: Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol (Lond) 424:387409, 1990 Duchen MR: Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol (Lond) 424:387–409, 1990

    • Search Google Scholar
    • Export Citation
  • 27.

    Eisner DA, & Lederer WJ: Na-Ca exchange: stiochiometry and electrogenicity. Am J Physiol 248:C189C202, 1985 Eisner DA, Lederer WJ: Na-Ca exchange: stiochiometry and electrogenicity. Am J Physiol 248:C189–C202, 1985

    • Search Google Scholar
    • Export Citation
  • 28.

    Fagg GE, , Foster AC, & Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357363, 1986 Fagg GE, Foster AC, Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357–363, 1986

    • Search Google Scholar
    • Export Citation
  • 29.

    Flamm ES, , Demopoulos HB, & Seligman ML, et al: Free radicals in cerebral ischemia. Stroke 9:445447 1978 Flamm ES, Demopoulos HB, Seligman ML, et al: Free radicals in cerebral ischemia. Stroke 9:445–447 1978

    • Search Google Scholar
    • Export Citation
  • 30.

    Folbergrová J, , Minamisawa H, & Ekholm A, et al: Phosphorylase α and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J Neurochem 55:16901696, 1990 Folbergrová J, Minamisawa H, Ekholm A, et al: Phosphorylase α and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J Neurochem 55:1690–1696, 1990

    • Search Google Scholar
    • Export Citation
  • 31.

    Frandsen A, & Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56:10751078, 1991 Frandsen A, Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56:1075–1078, 1991

    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia J: Experimental ischemic stroke: a review. Stroke 15:514, 1984 Garcia J: Experimental ischemic stroke: a review. Stroke 15:5–14, 1984

    • Search Google Scholar
    • Export Citation
  • 33.

    Gardiner M, , Smith ML, & Kågström E, et al: Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. J Cereb Blood Flow Metab 2:429438, 1982 Gardiner M, Smith ML, Kågström E, et al: Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. J Cereb Blood Flow Metab 2:429–438, 1982

    • Search Google Scholar
    • Export Citation
  • 34.

    Ginsberg MD, & Busto R: Rodent models of cerebral ischemia. Stroke 20:16271642, 1989 Ginsberg MD, Busto R: Rodent models of cerebral ischemia. Stroke 20:1627–1642, 1989

    • Search Google Scholar
    • Export Citation
  • 35.

    Ginsberg MD, , Reivich M, & Frinak S, et al: Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7:125131, 1976 Ginsberg MD, Reivich M, Frinak S, et al: Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7:125–131, 1976

    • Search Google Scholar
    • Export Citation
  • 36.

    Glaum SR, , Scholz WK, & Miller RJ: Acute- and long-term glutamate-mediated regulation of [Ca++] in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253:12931302, 1990 Glaum SR, Scholz WK, Miller RJ: Acute- and long-term glutamate-mediated regulation of [Ca++] in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253:1293–1302, 1990

    • Search Google Scholar
    • Export Citation
  • 37.

    Greenberg D: Calcium channels and calcium channel antagonists. Ann Neurol 21:317330, 1987 Greenberg D: Calcium channels and calcium channel antagonists. Ann Neurol 21:317–330, 1987

    • Search Google Scholar
    • Export Citation
  • 38.

    Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676683, 1986 Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676–683, 1986

    • Search Google Scholar
    • Export Citation
  • 39.

    Hakim AM: The cerebral ischemic penumbra. Can J Neurol Sci 14:557559, 1987 Hakim AM: The cerebral ischemic penumbra. Can J Neurol Sci 14:557–559, 1987

    • Search Google Scholar
    • Export Citation
  • 40.

    Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101148, 1985 Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148, 1985

    • Search Google Scholar
    • Export Citation
  • 41.

    Hansen AJ, & Zeuthen T: Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437445, 1981 Hansen AJ, Zeuthen T: Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445, 1981

    • Search Google Scholar
    • Export Citation
  • 42.

    Harris RJ, & Symon L: Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4:178186, 1984 Harris RJ, Symon L: Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4:178–186, 1984

    • Search Google Scholar
    • Export Citation
  • 43.

    Harris RJ, , Symon L, & Branston NM, et al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203209, 1981 Harris RJ, Symon L, Branston NM, et al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209, 1981

    • Search Google Scholar
    • Export Citation
  • 44.

    Heiss WD, , Hayakawa T, & Waltz AG: Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33:813820, 1976 Heiss WD, Hayakawa T, Waltz AG: Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33:813–820, 1976

    • Search Google Scholar
    • Export Citation
  • 45.

    Heiss WD, & Rosner G: Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294301, 1983 Heiss WD, Rosner G: Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294–301, 1983

    • Search Google Scholar
    • Export Citation
  • 46.

    Hochachka PW, & Mommsen TP: Protons and anaerobiosis. Science 219:13911397, 1983 Hochachka PW, Mommsen TP: Protons and anaerobiosis. Science 219:1391–1397, 1983

    • Search Google Scholar
    • Export Citation
  • 47.

    Hossmann KA: Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance. Prog Brain Res 63:317, 1985 Hossmann KA: Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance. Prog Brain Res 63:3–17, 1985

    • Search Google Scholar
    • Export Citation
  • 48.

    Hossmann KA, & Kleihues P: Reversibility of ischemic brain damage. Arch Neurol 29:375384, 1973 Hossmann KA, Kleihues P: Reversibility of ischemic brain damage. Arch Neurol 29:375–384, 1973

    • Search Google Scholar
    • Export Citation
  • 49.

    Hossmann KA, , Sakaki S, & Zimmermann V: Cation activities in reversible ischemia of the cat brain. Stroke 8:7781, 1977 Hossmann KA, Sakaki S, Zimmermann V: Cation activities in reversible ischemia of the cat brain. Stroke 8:77–81, 1977

    • Search Google Scholar
    • Export Citation
  • 50.

    Ito U, , Ohno K, & Nakamura R, et al: Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10:542547, 1979 Ito U, Ohno K, Nakamura R, et al: Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10:542–547, 1979

    • Search Google Scholar
    • Export Citation
  • 51.

    Jacewicz M, , Brint S, & Tanabe J, et al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:8996, 1990 Jacewicz M, Brint S, Tanabe J, et al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:89–96, 1990

    • Search Google Scholar
    • Export Citation
  • 52.

    Johshita H, , Asano T, & Hanamura T, et al: Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 20:788794, 1989 Johshita H, Asano T, Hanamura T, et al: Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 20:788–794, 1989

    • Search Google Scholar
    • Export Citation
  • 53.

    Jones TH, , Morawetz RB, & Crowell RM, et al: Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773782, 1981 Jones TH, Morawetz RB, Crowell RM, et al: Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782, 1981

    • Search Google Scholar
    • Export Citation
  • 54.

    Kaila K, & Voipio J: Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163165, 1987 (Letter) Kaila K, Voipio J: Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165, 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 55.

    Kanner BI, & Schuldiner S: Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22:138, 1987 Kanner BI, Schuldiner S: Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22:1–38, 1987

    • Search Google Scholar
    • Export Citation
  • 56.

    Kaplan B, , Brint S, & Tanabe J, et al: Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:10321039, 1991 Kaplan B, Brint S, Tanabe J, et al: Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:1032–1039, 1991

    • Search Google Scholar
    • Export Citation
  • 57.

    Kobataka K, , Sako K, & Izawa M, et al: Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15:540547, 1984 Kobataka K, Sako K, Izawa M, et al: Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15:540–547, 1984

    • Search Google Scholar
    • Export Citation
  • 58.

    Koizumi J, , Yoshida Y, & Nakazawa T, et al: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:18, 1986 Koizumi J, Yoshida Y, Nakazawa T, et al: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8, 1986

    • Search Google Scholar
    • Export Citation
  • 59.

    Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:508516, 1985 Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:508–516, 1985

    • Search Google Scholar
    • Export Citation
  • 60.

    Korthuis RJ, , Granger DK, & Townsley MI, et al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599609, 1985 Korthuis RJ, Granger DK, Townsley MI, et al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599–609, 1985

    • Search Google Scholar
    • Export Citation
  • 61.

    Kraig RP, & Nicholson C: Extracellular ionic variations during spreading depression. Neuroscience 3:10451059, 1978 Kraig RP, Nicholson C: Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059, 1978

    • Search Google Scholar
    • Export Citation
  • 62.

    Krieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990 Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990

    • Search Google Scholar
    • Export Citation
  • 63.

    Krnjević K, & Leblond J: Anoxia reversibly suppresses neuronal calcium currents in rat hippocampal slices. Can J Physiol Pharmacol 65:21572161, 1987 Krnjević K, Leblond J: Anoxia reversibly suppresses neuronal calcium currents in rat hippocampal slices. Can J Physiol Pharmacol 65:2157–2161, 1987

    • Search Google Scholar
    • Export Citation
  • 64.

    Lazdunski M, , Frelin C, & Vigne P: The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:10291042, 1985 Lazdunski M, Frelin C, Vigne P: The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042, 1985

    • Search Google Scholar
    • Export Citation
  • 65.

    Leblanc R: Clinical and experimental investigation of aneurysmal subarachnoid hemorrhage. Curr Opin Neurol Neurosurg 4:6370, 1991 Leblanc R: Clinical and experimental investigation of aneurysmal subarachnoid hemorrhage. Curr Opin Neurol Neurosurg 4:63–70, 1991

    • Search Google Scholar
    • Export Citation
  • 66.

    Lemasters JJ, , DiGuiseppi J, & Nieminen AL, et al: Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:7881, 1987 (Letter) Lemasters JJ, DiGuiseppi J, Nieminen AL, et al: Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78–81, 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 67.

    Ljunggren B, , Norberg K, & Siesjö BK: Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173186, 1974 Ljunggren B, Norberg K, Siesjö BK: Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–186, 1974

    • Search Google Scholar
    • Export Citation
  • 68.

    Lodge D, & Collingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:2124, 1990 Lodge D, Collingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:21–24, 1990

    • Search Google Scholar
    • Export Citation
  • 69.

    Longa EZ, , Weinstein PR, & Carlson S, et al: Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:8491, 1989 Longa EZ, Weinstein PR, Carlson S, et al: Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:84–91, 1989

    • Search Google Scholar
    • Export Citation
  • 70.

    Marcoux FW, , Morawetz RB, & Crowell RM, et al: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:339346, 1982 Marcoux FW, Morawetz RB, Crowell RM, et al: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:339–346, 1982

    • Search Google Scholar
    • Export Citation
  • 71.

    Marrannes R, , Willems R, & De Prins E, et al: Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457:226240, 1988 Marrannes R, Willems R, De Prins E, et al: Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457:226–240, 1988

    • Search Google Scholar
    • Export Citation
  • 72.

    Mayer ML, & Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197276, 1987 Mayer ML, Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276, 1987

    • Search Google Scholar
    • Export Citation
  • 73.

    Mayer ML, , Westbrook GL, & Guthrie PB: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261263, 1984 (Letter) Mayer ML, Westbrook GL, Guthrie PB: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261–263, 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 74.

    McBurney RN, & Neering IR: Neuronal calcium homeostasis. Trends Neurosci 10:164169, 1987 McBurney RN, Neering IR: Neuronal calcium homeostasis. Trends Neurosci 10:164–169, 1987

    • Search Google Scholar
    • Export Citation
  • 75.

    McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159163, 1985 McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163, 1985

    • Search Google Scholar
    • Export Citation
  • 76.

    Memezawa H, , Minamisawa H, & Smith ML, et al: Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res (In press, 1992) Memezawa H, Minamisawa H, Smith ML, et al: Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 77.

    Memezawa H, , Smith ML, & Siesjö BK: Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552559, 1992 Memezawa H, Smith ML, Siesjö BK: Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559, 1992

    • Search Google Scholar
    • Export Citation
  • 78.

    Meyer FB, , Anderson RE, & Sundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF, brain pHi, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:97103, 1990 Meyer FB, Anderson RE, Sundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF, brain pHi, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:97–103, 1990

    • Search Google Scholar
    • Export Citation
  • 79.

    Meyer FB, , Anderson RE, & Yaksh TL, et al: Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617626, 1986 Meyer FB, Anderson RE, Yaksh TL, et al: Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617–626, 1986

    • Search Google Scholar
    • Export Citation
  • 80.

    Meyer FB, , Sundt TM Jr, & Yanagihara T, et al: Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 62:3555, 1987 Meyer FB, Sundt TM Jr, Yanagihara T, et al: Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 62:35–55, 1987

    • Search Google Scholar
    • Export Citation
  • 81.

    Michenfelder JD, & Sundt TM Jr: Cerebral ATP and lactate levels in the squirrel monkey following occlusion of the middle cerebral artery. Stroke 5:319326, 1971 Michenfelder JD, Sundt TM Jr: Cerebral ATP and lactate levels in the squirrel monkey following occlusion of the middle cerebral artery. Stroke 5:319–326, 1971

    • Search Google Scholar
    • Export Citation
  • 82.

    Michenfelder JD, & Theye RA: The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33:430439, 1970 Michenfelder JD, Theye RA: The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33:430–439, 1970

    • Search Google Scholar
    • Export Citation
  • 83.

    Mies G, , Auer LM, & Ebhardt G, et al: Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14:2227, 1983 Mies G, Auer LM, Ebhardt G, et al: Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14:22–27, 1983

    • Search Google Scholar
    • Export Citation
  • 84.

    Mies G, , Ishimaru S, & Xie Y, et al: Ischemic thresholds of brain protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:753761, 1991 Mies G, Ishimaru S, Xie Y, et al: Ischemic thresholds of brain protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:753–761, 1991

    • Search Google Scholar
    • Export Citation
  • 85.

    Miller RJ: Multiple calcium channels and neuronal function. Science 235:4652, 1987 Miller RJ: Multiple calcium channels and neuronal function. Science 235:46–52, 1987

    • Search Google Scholar
    • Export Citation
  • 86.

    Molinari GF, & Laurent JP: A classification of experimental models of brain ischemia. Stroke 7:1417, 1976 Molinari GF, Laurent JP: A classification of experimental models of brain ischemia. Stroke 7:14–17, 1976

    • Search Google Scholar
    • Export Citation
  • 87.

    Mourre C, , Ari YB, & Barnardi H, et al: Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486:159164, 1989 Mourre C, Ari YB, Barnardi H, et al: Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486:159–164, 1989

    • Search Google Scholar
    • Export Citation
  • 88.

    Murphy SN, & Miller RJ: A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85:87378741, 1988 Murphy SN, Miller RJ: A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85:8737–8741, 1988

    • Search Google Scholar
    • Export Citation
  • 89.

    Mutch WA, & Hansen AJ: Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:1727, 1984 Mutch WA, Hansen AJ: Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17–27, 1984

    • Search Google Scholar
    • Export Citation
  • 90.

    Nagasawa H, & Kogure K: Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:10371043, 1989 Nagasawa H, Kogure K: Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043, 1989

    • Search Google Scholar
    • Export Citation
  • 91.

    Nahorski S: Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 11:444448, 1988 Nahorski S: Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 11:444–448, 1988

    • Search Google Scholar
    • Export Citation
  • 92.

    Nakai H, , Yamamoto YL, & Diksic M, et al: Triple-tracer autoradiography demonstrates effects of hyperglycemia on cerebral blood flow, pH, and glucose utilization in cerebral ischemia of rats. Stroke 19:764772, 1988 Nakai H, Yamamoto YL, Diksic M, et al: Triple-tracer autoradiography demonstrates effects of hyperglycemia on cerebral blood flow, pH, and glucose utilization in cerebral ischemia of rats. Stroke 19:764–772, 1988

    • Search Google Scholar
    • Export Citation
  • 93.

    Naritomi H, , Sasaki M, & Kanashiro M, et al: Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23 Na nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 8:1623, 1988 Naritomi H, Sasaki M, Kanashiro M, et al: Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23 Na nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 8:16–23, 1988

    • Search Google Scholar
    • Export Citation
  • 94.

    Nedergaard M: Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 73:267274, 1987 Nedergaard M: Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 73:267–274, 1987

    • Search Google Scholar
    • Export Citation
  • 95.

    Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:7985, 1987 Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79–85, 1987

    • Search Google Scholar
    • Export Citation
  • 96.

    Nedergaard M, & Diemer NH: Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:131137, 1987 Nedergaard M, Diemer NH: Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:131–137, 1987

    • Search Google Scholar
    • Export Citation
  • 97.

    Nedergaard M, , Gjedde A, & Diemer N: Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6:414424, 1986 Nedergaard M, Gjedde A, Diemer N: Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6:414–424, 1986

    • Search Google Scholar
    • Export Citation
  • 98.

    Nedergaard M, , Vorstrup S, & Astrup J: Cell density in the border zone around old small human brain infarcts. Stroke 17:11291137, 1986 Nedergaard M, Vorstrup S, Astrup J: Cell density in the border zone around old small human brain infarcts. Stroke 17:1129–1137, 1986

    • Search Google Scholar
    • Export Citation
  • 99.

    Nicholls D, & Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462468, 1990 Nicholls D, Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468, 1990

    • Search Google Scholar
    • Export Citation
  • 100.

    Nicholson C, , Bruggencate GT, & Steinberg R, et al: Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci USA 74:12871290, 1977 Nicholson C, Bruggencate GT, Steinberg R, et al: Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci USA 74:1287–1290, 1977

    • Search Google Scholar
    • Export Citation
  • 101.

    Nicoletti F, , Wroblewski JT, & Novelli A, et al: The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6:19051911, 1986 Nicoletti F, Wroblewski JT, Novelli A, et al: The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6:1905–1911, 1986

    • Search Google Scholar
    • Export Citation
  • 102.

    Nordström CH, & Siesjö BK: Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand 104:271280, 1978 Nordström CH, Siesjö BK: Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand 104:271–280, 1978

    • Search Google Scholar
    • Export Citation
  • 103.

    Nowak L, , Bregestovski P, & Ascher P, et al: Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462465, 1984 (Letter) Nowak L, Bregestovski P, Ascher P, et al: Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465, 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 104.

    Obrenovitch T, , Scheller D, & Matsumoto T, et al: A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol 64:11251133, 1990 Obrenovitch T, Scheller D, Matsumoto T, et al: A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol 64:1125–1133, 1990

    • Search Google Scholar
    • Export Citation
  • 105.

    Obrenovitch TP, , Garofalo O, & Harris RJ, et al: Brain tissue concentrations of ATP, phosphocreatine, lactate and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 8:866874, 1988 Obrenovitch TP, Garofalo O, Harris RJ, et al: Brain tissue concentrations of ATP, phosphocreatine, lactate and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 8:866–874, 1988

    • Search Google Scholar
    • Export Citation
  • 106.

    Pickard JD, , Murray GD, & Illingworth R, et al: Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J 298:636642, 1989 Pickard JD, Murray GD, Illingworth R, et al: Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J 298:636–642, 1989

    • Search Google Scholar
    • Export Citation
  • 107.

    Reichardt LF, & Kelly RB: A molecular description of nerve terminal function. Annu Rev Biochem 52:871926, 1983 Reichardt LF, Kelly RB: A molecular description of nerve terminal function. Annu Rev Biochem 52:871–926, 1983

    • Search Google Scholar
    • Export Citation
  • 108.

    Ritchie J, , Keynes R, & Bolis L: Ion Channels in Neural Membranes. New York: Alan R Liss, 1986 Ritchie J, Keynes R, Bolis L: Ion Channels in Neural Membranes. New York: Alan R Liss, 1986

    • Search Google Scholar
    • Export Citation
  • 109.

    Rothman SM, & Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105111, 1986 Rothman SM, Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111, 1986

    • Search Google Scholar
    • Export Citation
  • 110.

    Sako K, , Kobatake K, & Yamamoto YL, et al: Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16:828834, 1985 Sako K, Kobatake K, Yamamoto YL, et al: Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16:828–834, 1985

    • Search Google Scholar
    • Export Citation
  • 111.

    Sanchez-Armass S, & Blaustein MP: Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252:C595C603, 1987 Sanchez-Armass S, Blaustein MP: Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252:C595–C603, 1987

    • Search Google Scholar
    • Export Citation
  • 112.

    Sharbrough FW, , Messick JM Jr, & Sundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:674683, 1973 Sharbrough FW, Messick JM Jr, Sundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:674–683, 1973

    • Search Google Scholar
    • Export Citation
  • 113.

    Siesjö B: Brain Energy Metabolism. London: John Wiley & Sons, 1978 Siesjö B: Brain Energy Metabolism. London: John Wiley & Sons, 1978

  • 114.

    Siesjö B: Calcium, excitotoxins, and brain damage. News Physiol Sci 5:120125, 1990 Siesjö B: Calcium, excitotoxins, and brain damage. News Physiol Sci 5:120–125, 1990

    • Search Google Scholar
    • Export Citation
  • 115.

    Siesjö B: The role of calcium in cell death, in Price D, , Aguayo A, & Thoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons, 1992, pp 3559 Siesjö B: The role of calcium in cell death, in Price D, Aguayo A, Thoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons, 1992, pp 35–59

    • Search Google Scholar
    • Export Citation
  • 116.

    Siesjö B, , Ekholm A, & Katsura K, et al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel block, in Krieglstein J, & Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 319323 Siesjö B, Ekholm A, Katsura K, et al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel block, in Krieglstein J, Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1990, pp 319–323

    • Search Google Scholar
    • Export Citation
  • 117.

    Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:3188, 1988 Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:31–88, 1988

    • Search Google Scholar
    • Export Citation
  • 118.

    Siesjö BK: Calcium in the brain under physiological and pathological conditions. Eur Neurol 30 (Suppl 2):39, 1990 Siesjö BK: Calcium in the brain under physiological and pathological conditions. Eur Neurol 30 (Suppl 2):3–9, 1990

    • Search Google Scholar
    • Export Citation
  • 119.

    Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155185, 1981 Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185, 1981

    • Search Google Scholar
    • Export Citation
  • 120.

    Siesjö BK: Cerebral circulation and metabolism. J Neurosnrg 60:883908, 1984 Siesjö BK: Cerebral circulation and metabolism. J Neurosnrg 60:883–908, 1984

    • Search Google Scholar
    • Export Citation
  • 121.

    Siesjö BK: Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638661, 1988 Siesjö BK: Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638–661, 1988

    • Search Google Scholar
    • Export Citation
  • 122.

    Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954963, 1988 Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954–963, 1988

    • Search Google Scholar
    • Export Citation
  • 123.

    Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. Part II. Mechanisms of damage and treatment. J Neurosurg 77 (In press, 1992) Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. Part II. Mechanisms of damage and treatment. J Neurosurg 77 (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 124.

    Siesjö BK, , Agardh CD, & Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165211, 1989 Siesjö BK, Agardh CD, Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211, 1989

    • Search Google Scholar
    • Export Citation
  • 125.

    Siesjö BK, & Bengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127140, 1989 Siesjö BK, Bengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140, 1989

    • Search Google Scholar
    • Export Citation
  • 126.

    Siesjö BK, , Bengtsson F, & Grampp W, et al: Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234251, 1989 Siesjö BK, Bengtsson F, Grampp W, et al: Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:234–251, 1989

    • Search Google Scholar
    • Export Citation
  • 127.

    Siesjö BK, , Memezawa H, & Smith ML: Fundamental and Clinical Pharmacology. (In press, 1992) Siesjö BK, Memezawa H, Smith ML: Fundamental and Clinical Pharmacology. (In press, 1992)

    • Search Google Scholar
    • Export Citation
  • 128.

    Siesjö BK, & Nilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest 27:8396, 1971 Siesjö BK, Nilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest 27:83–96, 1971

    • Search Google Scholar
    • Export Citation
  • 129.

    Siesjö BK, & Zwetnow NN: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:114124, 1970 Siesjö BK, Zwetnow NN: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:114–124, 1970

    • Search Google Scholar
    • Export Citation
  • 130.

    Silver IA, & Erecinska M: Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837866, 1990 Silver IA, Erecinska M: Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866, 1990

    • Search Google Scholar
    • Export Citation
  • 131.

    Sladeczek F, , Recasens M, & Bockaert J: A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci 11:545549, 1988 Sladeczek F, Recasens M, Bockaert J: A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci 11:545–549, 1988

    • Search Google Scholar
    • Export Citation
  • 132.

    Smith ML, , Auer RN, & Siesjö BK: The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:319332, 1984 Smith ML, Auer RN, Siesjö BK: The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:319–332, 1984

    • Search Google Scholar
    • Export Citation
  • 133.

    Smith ML, , von Hanwehr R, & Siesjö BK: Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6:574583, 1986 Smith ML, von Hanwehr R, Siesjö BK: Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6:574–583, 1986

    • Search Google Scholar
    • Export Citation
  • 134.

    Strong AJ, , Tomlinson BE, & Venables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:755758, 1984 (Letter) Strong AJ, Tomlinson BE, Venables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:755–758, 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 135.

    Strong AJ, , Tomlinson BE, & Venables GS, et al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97108, 1983 Strong AJ, Tomlinson BE, Venables GS, et al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97–108, 1983

    • Search Google Scholar
    • Export Citation
  • 136.

    Strong AJ, , Venables GS, & Gibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:8696, 1983 Strong AJ, Venables GS, Gibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:86–96, 1983

    • Search Google Scholar
    • Export Citation
  • 137.

    Sugiyama H, , Ito I, & Hirono C: A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531533, 1987 (Letter) Sugiyama H, Ito I, Hirono C: A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533, 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 138.

    Sundt TM Jr, , Grant WC, & Garcia JH: Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31:311322, 1969 Sundt TM Jr, Grant WC, Garcia JH: Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31:311–322, 1969

    • Search Google Scholar
    • Export Citation
  • 139.

    Sundt TM Jr, & Michenfelder JD: Focal transient cerebral ischemia in the squirrel monkey. Effect on brain adenosine triphosphate and lactate levels with electrocorticographic and pathologic correlation. Circ Res 30:703712, 1972 Sundt TM Jr, Michenfelder JD: Focal transient cerebral ischemia in the squirrel monkey. Effect on brain adenosine triphosphate and lactate levels with electrocorticographic and pathologic correlation. Circ Res 30:703–712, 1972

    • Search Google Scholar
    • Export Citation
  • 140.

    Symon L, , Branston NM, & Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:184191, 1979 Symon L, Branston NM, Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:184–191, 1979

    • Search Google Scholar
    • Export Citation
  • 141.

    Symon L, , Branston NM, & Strong AJ: Autoregulation in acute focal ischemia. An experimental study. Stroke 7:547554, 1976 Symon L, Branston NM, Strong AJ: Autoregulation in acute focal ischemia. An experimental study. Stroke 7:547–554, 1976

    • Search Google Scholar
    • Export Citation
  • 142.

    Symon L, , Pasztor E, & Branston NM: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5:355364, 1974 Symon L, Pasztor E, Branston NM: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5:355–364, 1974

    • Search Google Scholar
    • Export Citation
  • 143.

    Tamura A, , Asano T, & Sano K: Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11:487493, 1980 Tamura A, Asano T, Sano K: Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11:487–493, 1980

    • Search Google Scholar
    • Export Citation
  • 144.

    Tamura A, , Graham DI, & McCulloch J, et al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:6169, 1981 Tamura A, Graham DI, McCulloch J, et al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69, 1981

    • Search Google Scholar
    • Export Citation
  • 145.

    Trojaborg W, & Boysen G: Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:6169, 1973 Trojaborg W, Boysen G: Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:61–69, 1973

    • Search Google Scholar
    • Export Citation
  • 146.

    Tsien RW, , Lipscombe D, & Madison DV, et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431438, 1988 Tsien RW, Lipscombe D, Madison DV, et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438, 1988

    • Search Google Scholar
    • Export Citation
  • 147.

    Tyson GW, , Teasdale GM, & Graham DI, et al: Focal cerebral ischemia in the rat: topography of hemodynamic and histopathological changes. Ann Neurol 15:559567, 1984 Tyson GW, Teasdale GM, Graham DI, et al: Focal cerebral ischemia in the rat: topography of hemodynamic and histopathological changes. Ann Neurol 15:559–567, 1984

    • Search Google Scholar
    • Export Citation
  • 148.

    Uematsu D, , Greenberg JH, & Reivich M, et al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:367374, 1988 Uematsu D, Greenberg JH, Reivich M, et al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:367–374, 1988

    • Search Google Scholar
    • Export Citation
  • 149.

    von Hanwehr R, , Smith ML, & Siesjö BK: Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46:331339, 1986 von Hanwehr R, Smith ML, Siesjö BK: Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46:331–339, 1986

    • Search Google Scholar
    • Export Citation
  • 150.

    Vyskočil F, , Kříž N, & Bureš J: Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255259, 1972 Vyskočil F, Kříž N, Bureš J: Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259, 1972

    • Search Google Scholar
    • Export Citation
  • 151.

    Waltz AG: Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex. The phenomena of autoregulation and luxury perfusion. Neurology 18:613621, 1968 Waltz AG: Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex. The phenomena of autoregulation and luxury perfusion. Neurology 18:613–621, 1968

    • Search Google Scholar
    • Export Citation
  • 152.

    Watkins JC, & Evans RH: Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165204, 1981 Watkins JC, Evans RH: Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204, 1981

    • Search Google Scholar
    • Export Citation
  • 153.

    Watkins JC, & Olverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265272, 1987 Watkins JC, Olverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272, 1987

    • Search Google Scholar
    • Export Citation
  • 154.

    Weinstein PR, , Anderson GG, & Telles DA: Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats. Stroke 17:318324, 1986 Weinstein PR, Anderson GG, Telles DA: Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats. Stroke 17:318–324, 1986

    • Search Google Scholar
    • Export Citation
  • 155.

    Westenbroek RE, , Ahlijanian MK, & Catterall WA: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281284, 1990 (Letter) Westenbroek RE, Ahlijanian MK, Catterall WA: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284, 1990 (Letter)

    • Search Google Scholar
    • Export Citation
  • 156.

    Wiebers DO, , Adams HP Jr, & Whisnant JP: Animal models of stroke: are they relevant to human disease? Stroke 21:13, 1990 Wiebers DO, Adams HP Jr, Whisnant JP: Animal models of stroke: are they relevant to human disease? Stroke 21:1–3, 1990

    • Search Google Scholar
    • Export Citation
  • 157.

    Wieloch T, , Harris RJ, & Symon L, et al: Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43:160168, 1984 Wieloch T, Harris RJ, Symon L, et al: Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43:160–168, 1984

    • Search Google Scholar
    • Export Citation
  • 158.

    Wieloch T, & Siesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:269277, 1982 Wieloch T, Siesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:269–277, 1982

    • Search Google Scholar
    • Export Citation
  • 159.

    Xie Y, , Mies G, & Hossmann KA: Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20:620626, 1989 Xie Y, Mies G, Hossmann KA: Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20:620–626, 1989

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1763 699 63
Full Text Views 374 53 2
PDF Downloads 195 32 0
EPUB Downloads 0 0 0