Pathophysiology and treatment of focal cerebral ischemia

Part I: Pathophysiology

Restricted access

✓ This article examines the pathophysiology of lesions caused by focal cerebral ischemia. Ischemia due to middle cerebral artery occlusion encompasses a densely ischemic focus and a less densely ischemic penumbral zone. Cells in the focus are usually doomed unless reperfusion is quickly instituted. In contrast, although the penumbra contains cells “at risk.” these may remain viable for at least 4 to 8 hours. Cells in the penumbra may be salvaged by reperfusion or by drugs that prevent an extension of the infarction into the penumbral zone. Factors responsible for such an extension probably include acidosis, edema, K+/Ca++ transients, and inhibition of protein synthesis.

Central to any discussion of the pathophysiology of ischemic lesions is energy depletion. This is because failure to maintain cellular adenosine triphosphate (ATP) levels leads to degradation of macromolecules of key importance to membrane and cytoskeletal integrity, to loss of ion homeostasis, involving cellular accumulation of Ca++, Na+, and Cl, with osmotically obligated water, and to production of metabolic acids with a resulting decrease in intra- and extracellular pH.

In all probability, loss of cellular calcium homeostasis plays an important role in the pathogenesis of ischemic cell damage. The resulting rise in the free cytosolic intracellular calcium concentration (Ca++) depends on both the loss of calcium pump function (due to ATP depletion), and the rise in membrane permeability to calcium. In ischemia, calcium influx occurs via multiple pathways. Some of the most important routes depend on activation of receptors by glutamate and associated excitatory amino acids released from depolarized presynaptic endings. However, ischemia also interferes with the intracellular sequestration and binding of calcium, thereby contributing to the rise in intracellular Ca++.

A second key event in the ischemic tissue is activation of anaerobic glucolysis. The main reason for this activation is inhibition of mitochondrial metabolism by lack of oxygen; however, other factors probably contribute. For example, there is a complex interplay between loss of cellular calcium homeostasis and acidosis. On the one hand, a rise in intracellular Ca++ is apt to cause mitochondrial accumulation of calcium. This must interfere with ATP production and enhance anaerobic glucolysis. On the other hand, acidosis must interfere with calcium binding, thereby contributing to the rise in intracellular Ca++.

Article Information

Contributor Notes

Address reprint requests to: Bo K. Siesjö, M.D., Laboratory for Experimental Brain Research, Experimental Research Center, Lund University Hospital, S-221 85 Lund, Sweden.
Headings
References
  • 1.

    Anderson RESundt TM Jr: Brain pH in focal cerebral ischemia and the protective effects of barbiturate anesthesia. J Cereb Blood Flow Metab 3:4934971983Anderson RE Sundt TM Jr: Brain pH in focal cerebral ischemia and the protective effects of barbiturate anesthesia. J Cereb Blood Flow Metab 3:493–497 1983

    • Search Google Scholar
    • Export Citation
  • 2.

    Astrup JSiesjö BKSymon L: Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12:7237251981Astrup J Siesjö BK Symon L: Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12:723–725 1981

    • Search Google Scholar
    • Export Citation
  • 3.

    Astrup JSymon LBranston NMet al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51571977Astrup J Symon L Branston NM et al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57 1977

    • Search Google Scholar
    • Export Citation
  • 4.

    Bazan N: Neuronal cell signal transduction and second messengers in cerebral ischemia in Krieglstein JOberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft1990 pp 391396Bazan N: Neuronal cell signal transduction and second messengers in cerebral ischemia in Krieglstein J Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft 1990 pp 391–396

    • Search Google Scholar
    • Export Citation
  • 5.

    Bazan NSquinto SBraquet Pet al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:123612421991Bazan N Squinto S Braquet P et al: Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: intracellular PAF-binding sites and activation of a FOS/JUN/AP-1 transcriptional signaling system. Lipids 26:1236–1242 1991

    • Search Google Scholar
    • Export Citation
  • 6.

    Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72:3173351976Bazan NG: Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv Exp Med Biol 72:317–335 1976

    • Search Google Scholar
    • Export Citation
  • 7.

    Behar KLRothman DLHossmann KA: NMR Spectroscopic investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metab 9:6556651989Behar KL Rothman DL Hossmann KA: NMR Spectroscopic investigation of the recovery of energy and acid-base homeostasis in the cat brain after prolonged ischemia. J Cereb Blood Flow Metab 9:655–665 1989

    • Search Google Scholar
    • Export Citation
  • 8.

    Ben-An Y: Hippocampal potassium ATP channels and anoxia: presynaptic postsynaptic or both? Trends Neurosci 13:4094101990 (Letter)Ben-An Y: Hippocampal potassium ATP channels and anoxia: presynaptic postsynaptic or both? Trends Neurosci 13:409–410 1990 (Letter)

    • Search Google Scholar
    • Export Citation
  • 9.

    Ben-Ari YKrnjević KCrépel V: Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 37:55601990Ben-Ari Y Krnjević K Crépel V: Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 37:55–60 1990

    • Search Google Scholar
    • Export Citation
  • 10.

    Berridge MJ: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:3453601984Berridge MJ: Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360 1984

    • Search Google Scholar
    • Export Citation
  • 11.

    Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:1591931987Berridge MJ: Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193 1987

    • Search Google Scholar
    • Export Citation
  • 12.

    Blaustein MP: Calcium transport and buffering in neurons. Trends Neurosci 11:4384431988Blaustein MP: Calcium transport and buffering in neurons. Trends Neurosci 11:438–443 1988

    • Search Google Scholar
    • Export Citation
  • 13.

    Bolander HGPersson LHillered Let al: Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20:9309371989Bolander HG Persson L Hillered L et al: Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats. Stroke 20:930–937 1989

    • Search Google Scholar
    • Export Citation
  • 14.

    Bolas NRajagopalan BMitsumori Fet al: Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. Stroke 19:6086141988Bolas N Rajagopalan B Mitsumori F et al: Metabolic changes during experimental cerebral ischemia in hyperglycemic rats observed by 31P and 1H magnetic resonance spectroscopy. Stroke 19:608–614 1988

    • Search Google Scholar
    • Export Citation
  • 15.

    Branston NMStrong AJSymon L: Extracellular potassium activity, evoked potential and tissue blood flow. J Neurol Sci 32:3053211977Branston NM Strong AJ Symon L: Extracellular potassium activity evoked potential and tissue blood flow. J Neurol Sci 32:305–321 1977

    • Search Google Scholar
    • Export Citation
  • 16.

    Branston NMSymon LCrockard HAet al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:1952081974Branston NM Symon L Crockard HA et al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195–208 1974

    • Search Google Scholar
    • Export Citation
  • 17.

    Brierley JBGraham DI: Hypoxia and vascular disorders of the central nervous system in Adams JHCorsellis JANDuchen LW (eds): Greenfield's Neuropathologyed 4. New York: John Wiley & Sons1984 pp 125207Brierley JB Graham DI: Hypoxia and vascular disorders of the central nervous system in Adams JH Corsellis JAN Duchen LW (eds): Greenfield's Neuropathology ed 4. New York: John Wiley & Sons 1984 pp 125–207

    • Search Google Scholar
    • Export Citation
  • 18.

    Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56:3954331987Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433 1987

    • Search Google Scholar
    • Export Citation
  • 19.

    Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:1051471990Choi D: Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2:105–147 1990

    • Search Google Scholar
    • Export Citation
  • 20.

    Chopp MFrinak SWalton DRet al: Intracellular acidosis during and after cerebral ischemia: in vivo nuclear magnetic resonance study of hyperglycemia in cats. Stroke 18:9199231987Chopp M Frinak S Walton DR et al: Intracellular acidosis during and after cerebral ischemia: in vivo nuclear magnetic resonance study of hyperglycemia in cats. Stroke 18:919–923 1987

    • Search Google Scholar
    • Export Citation
  • 21.

    Chopp MWelch KMATidwell CDet al: Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in cats. Stroke 19:138313871988Chopp M Welch KMA Tidwell CD et al: Global cerebral ischemia and intracellular pH during hyperglycemia and hypoglycemia in cats. Stroke 19:1383–1387 1988

    • Search Google Scholar
    • Export Citation
  • 22.

    Cotman CMonaghan D: Multiple excitatory amino acid receptor regulation of intracellular Ca2+. Implications for aging and Alzheimer's disease. Ann NY Acad Sci 568:1381481989Cotman C Monaghan D: Multiple excitatory amino acid receptor regulation of intracellular Ca2+. Implications for aging and Alzheimer's disease. Ann NY Acad Sci 568:138–148 1989

    • Search Google Scholar
    • Export Citation
  • 23.

    Crowell RMarcoux FWDeGirolami U: Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology 31:129513021981Crowell R Marcoux FW DeGirolami U: Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology 31:1295–1302 1981

    • Search Google Scholar
    • Export Citation
  • 24.

    Crowell RMOlsson YKlatzo Iet al: Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke 1:4394481970Crowell RM Olsson Y Klatzo I et al: Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke 1:439–448 1970

    • Search Google Scholar
    • Export Citation
  • 25.

    DeGirolami UCrowell RMMarcoux FW: Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol 43:57711984DeGirolami U Crowell RM Marcoux FW: Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol 43:57–71 1984

    • Search Google Scholar
    • Export Citation
  • 26.

    Duchen MR: Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol (Lond) 424:3874091990Duchen MR: Effects of metabolic inhibition on the membrane properties of isolated mouse primary sensory neurones. J Physiol (Lond) 424:387–409 1990

    • Search Google Scholar
    • Export Citation
  • 27.

    Eisner DALederer WJ: Na-Ca exchange: stiochiometry and electrogenicity. Am J Physiol 248:C189C2021985Eisner DA Lederer WJ: Na-Ca exchange: stiochiometry and electrogenicity. Am J Physiol 248:C189–C202 1985

    • Search Google Scholar
    • Export Citation
  • 28.

    Fagg GEFoster ACGanong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:3573631986Fagg GE Foster AC Ganong AH: Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357–363 1986

    • Search Google Scholar
    • Export Citation
  • 29.

    Flamm ESDemopoulos HBSeligman MLet al: Free radicals in cerebral ischemia. Stroke 9:445447 1978Flamm ES Demopoulos HB Seligman ML et al: Free radicals in cerebral ischemia. Stroke 9:445–447 1978

    • Search Google Scholar
    • Export Citation
  • 30.

    Folbergrová JMinamisawa HEkholm Aet al: Phosphorylase α and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J Neurochem 55:169016961990Folbergrová J Minamisawa H Ekholm A et al: Phosphorylase α and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J Neurochem 55:1690–1696 1990

    • Search Google Scholar
    • Export Citation
  • 31.

    Frandsen ASchousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56:107510781991Frandsen A Schousboe A: Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 56:1075–1078 1991

    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia J: Experimental ischemic stroke: a review. Stroke 15:5141984Garcia J: Experimental ischemic stroke: a review. Stroke 15:5–14 1984

    • Search Google Scholar
    • Export Citation
  • 33.

    Gardiner MSmith MLKågström Eet al: Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. J Cereb Blood Flow Metab 2:4294381982Gardiner M Smith ML Kågström E et al: Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. J Cereb Blood Flow Metab 2:429–438 1982

    • Search Google Scholar
    • Export Citation
  • 34.

    Ginsberg MDBusto R: Rodent models of cerebral ischemia. Stroke 20:162716421989Ginsberg MD Busto R: Rodent models of cerebral ischemia. Stroke 20:1627–1642 1989

    • Search Google Scholar
    • Export Citation
  • 35.

    Ginsberg MDReivich MFrinak Set al: Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7:1251311976Ginsberg MD Reivich M Frinak S et al: Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7:125–131 1976

    • Search Google Scholar
    • Export Citation
  • 36.

    Glaum SRScholz WKMiller RJ: Acute- and long-term glutamate-mediated regulation of [Ca++] in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253:129313021990Glaum SR Scholz WK Miller RJ: Acute- and long-term glutamate-mediated regulation of [Ca++] in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253:1293–1302 1990

    • Search Google Scholar
    • Export Citation
  • 37.

    Greenberg D: Calcium channels and calcium channel antagonists. Ann Neurol 21:3173301987Greenberg D: Calcium channels and calcium channel antagonists. Ann Neurol 21:317–330 1987

    • Search Google Scholar
    • Export Citation
  • 38.

    Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:6766831986Hakim AM: Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676–683 1986

    • Search Google Scholar
    • Export Citation
  • 39.

    Hakim AM: The cerebral ischemic penumbra. Can J Neurol Sci 14:5575591987Hakim AM: The cerebral ischemic penumbra. Can J Neurol Sci 14:557–559 1987

    • Search Google Scholar
    • Export Citation
  • 40.

    Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev 65:1011481985Hansen AJ: Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148 1985

    • Search Google Scholar
    • Export Citation
  • 41.

    Hansen AJZeuthen T: Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:4374451981Hansen AJ Zeuthen T: Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113:437–445 1981

    • Search Google Scholar
    • Export Citation
  • 42.

    Harris RJSymon L: Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4:1781861984Harris RJ Symon L: Extracellular pH potassium and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4:178–186 1984

    • Search Google Scholar
    • Export Citation
  • 43.

    Harris RJSymon LBranston NMet al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:2032091981Harris RJ Symon L Branston NM et al: Changes in extracellular calcium activity in cerebral ischaemia. J Cereb Blood Flow Metab 1:203–209 1981

    • Search Google Scholar
    • Export Citation
  • 44.

    Heiss WDHayakawa TWaltz AG: Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33:8138201976Heiss WD Hayakawa T Waltz AG: Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33:813–820 1976

    • Search Google Scholar
    • Export Citation
  • 45.

    Heiss WDRosner G: Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:2943011983Heiss WD Rosner G: Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294–301 1983

    • Search Google Scholar
    • Export Citation
  • 46.

    Hochachka PWMommsen TP: Protons and anaerobiosis. Science 219:139113971983Hochachka PW Mommsen TP: Protons and anaerobiosis. Science 219:1391–1397 1983

    • Search Google Scholar
    • Export Citation
  • 47.

    Hossmann KA: Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance. Prog Brain Res 63:3171985Hossmann KA: Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance. Prog Brain Res 63:3–17 1985

    • Search Google Scholar
    • Export Citation
  • 48.

    Hossmann KAKleihues P: Reversibility of ischemic brain damage. Arch Neurol 29:3753841973Hossmann KA Kleihues P: Reversibility of ischemic brain damage. Arch Neurol 29:375–384 1973

    • Search Google Scholar
    • Export Citation
  • 49.

    Hossmann KASakaki SZimmermann V: Cation activities in reversible ischemia of the cat brain. Stroke 8:77811977Hossmann KA Sakaki S Zimmermann V: Cation activities in reversible ischemia of the cat brain. Stroke 8:77–81 1977

    • Search Google Scholar
    • Export Citation
  • 50.

    Ito UOhno KNakamura Ret al: Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10:5425471979Ito U Ohno K Nakamura R et al: Brain edema during ischemia and after restoration of blood flow. Measurement of water sodium potassium content and plasma protein permeability. Stroke 10:542–547 1979

    • Search Google Scholar
    • Export Citation
  • 51.

    Jacewicz MBrint STanabe Jet al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:89961990Jacewicz M Brint S Tanabe J et al: Continuous nimodipine treatment attenuates cortical infarction in rats subjected to 24 hours of focal ischemia. J Cereb Blood Flow Metab 10:89–96 1990

    • Search Google Scholar
    • Export Citation
  • 52.

    Johshita HAsano THanamura Tet al: Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 20:7887941989Johshita H Asano T Hanamura T et al: Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 20:788–794 1989

    • Search Google Scholar
    • Export Citation
  • 53.

    Jones THMorawetz RBCrowell RMet al: Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:7737821981Jones TH Morawetz RB Crowell RM et al: Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782 1981

    • Search Google Scholar
    • Export Citation
  • 54.

    Kaila KVoipio J: Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:1631651987 (Letter)Kaila K Voipio J: Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 55.

    Kanner BISchuldiner S: Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22:1381987Kanner BI Schuldiner S: Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 22:1–38 1987

    • Search Google Scholar
    • Export Citation
  • 56.

    Kaplan BBrint STanabe Jet al: Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:103210391991Kaplan B Brint S Tanabe J et al: Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22:1032–1039 1991

    • Search Google Scholar
    • Export Citation
  • 57.

    Kobataka KSako KIzawa Met al: Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15:5405471984Kobataka K Sako K Izawa M et al: Autoradiographic determination of brain pH following middle cerebral artery occlusion in the rat. Stroke 15:540–547 1984

    • Search Google Scholar
    • Export Citation
  • 58.

    Koizumi JYoshida YNakazawa Tet al: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:181986Koizumi J Yoshida Y Nakazawa T et al: Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8 1986

    • Search Google Scholar
    • Export Citation
  • 59.

    Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:5085161985Kontos HA: Oxygen radicals in cerebral vascular injury. Circ Res 57:508–516 1985

    • Search Google Scholar
    • Export Citation
  • 60.

    Korthuis RJGranger DKTownsley MIet al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:5996091985Korthuis RJ Granger DK Townsley MI et al: The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. Circ Res 57:599–609 1985

    • Search Google Scholar
    • Export Citation
  • 61.

    Kraig RPNicholson C: Extracellular ionic variations during spreading depression. Neuroscience 3:104510591978Kraig RP Nicholson C: Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059 1978

    • Search Google Scholar
    • Export Citation
  • 62.

    Krieglstein JOberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft1990Krieglstein J Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft 1990

    • Search Google Scholar
    • Export Citation
  • 63.

    Krnjević KLeblond J: Anoxia reversibly suppresses neuronal calcium currents in rat hippocampal slices. Can J Physiol Pharmacol 65:215721611987Krnjević K Leblond J: Anoxia reversibly suppresses neuronal calcium currents in rat hippocampal slices. Can J Physiol Pharmacol 65:2157–2161 1987

    • Search Google Scholar
    • Export Citation
  • 64.

    Lazdunski MFrelin CVigne P: The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:102910421985Lazdunski M Frelin C Vigne P: The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042 1985

    • Search Google Scholar
    • Export Citation
  • 65.

    Leblanc R: Clinical and experimental investigation of aneurysmal subarachnoid hemorrhage. Curr Opin Neurol Neurosurg 4:63701991Leblanc R: Clinical and experimental investigation of aneurysmal subarachnoid hemorrhage. Curr Opin Neurol Neurosurg 4:63–70 1991

    • Search Google Scholar
    • Export Citation
  • 66.

    Lemasters JJDiGuiseppi JNieminen ALet al: Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78811987 (Letter)Lemasters JJ DiGuiseppi J Nieminen AL et al: Blebbing free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78–81 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 67.

    Ljunggren BNorberg KSiesjö BK: Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:1731861974Ljunggren B Norberg K Siesjö BK: Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res 77:173–186 1974

    • Search Google Scholar
    • Export Citation
  • 68.

    Lodge DCollingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:21241990Lodge D Collingridge G: Les agents provocateurs: a series on the pharmacology of excitatory amino acids. Trends Pharmacol Sci 11:21–24 1990

    • Search Google Scholar
    • Export Citation
  • 69.

    Longa EZWeinstein PRCarlson Set al: Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:84911989Longa EZ Weinstein PR Carlson S et al: Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:84–91 1989

    • Search Google Scholar
    • Export Citation
  • 70.

    Marcoux FWMorawetz RBCrowell RMet al: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:3393461982Marcoux FW Morawetz RB Crowell RM et al: Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:339–346 1982

    • Search Google Scholar
    • Export Citation
  • 71.

    Marrannes RWillems RDe Prins Eet al: Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457:2262401988Marrannes R Willems R De Prins E et al: Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 457:226–240 1988

    • Search Google Scholar
    • Export Citation
  • 72.

    Mayer MLWestbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:1972761987Mayer ML Westbrook GL: The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276 1987

    • Search Google Scholar
    • Export Citation
  • 73.

    Mayer MLWestbrook GLGuthrie PB: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:2612631984 (Letter)Mayer ML Westbrook GL Guthrie PB: Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309:261–263 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 74.

    McBurney RNNeering IR: Neuronal calcium homeostasis. Trends Neurosci 10:1641691987McBurney RN Neering IR: Neuronal calcium homeostasis. Trends Neurosci 10:164–169 1987

    • Search Google Scholar
    • Export Citation
  • 75.

    McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:1591631985McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163 1985

    • Search Google Scholar
    • Export Citation
  • 76.

    Memezawa HMinamisawa HSmith MLet al: Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res (In press 1992)Memezawa H Minamisawa H Smith ML et al: Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res (In press 1992)

    • Search Google Scholar
    • Export Citation
  • 77.

    Memezawa HSmith MLSiesjö BK: Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:5525591992Memezawa H Smith ML Siesjö BK: Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559 1992

    • Search Google Scholar
    • Export Citation
  • 78.

    Meyer FBAnderson RESundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF, brain pHi, and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:971031990Meyer FB Anderson RE Sundt TM Jr: The novel dihydronaphthyridine Ca2+ channel blocker CI-951 improves CBF brain pHi and EEG recovery in focal cerebral ischemia. J Cereb Blood Flow Metab 10:97–103 1990

    • Search Google Scholar
    • Export Citation
  • 79.

    Meyer FBAnderson REYaksh TLet al: Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:6176261986Meyer FB Anderson RE Yaksh TL et al: Effect of nimodipine on intracellular brain pH cortical blood flow and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617–626 1986

    • Search Google Scholar
    • Export Citation
  • 80.

    Meyer FBSundt TM JrYanagihara Tet al: Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 62:35551987Meyer FB Sundt TM Jr Yanagihara T et al: Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 62:35–55 1987

    • Search Google Scholar
    • Export Citation
  • 81.

    Michenfelder JDSundt TM Jr: Cerebral ATP and lactate levels in the squirrel monkey following occlusion of the middle cerebral artery. Stroke 5:3193261971Michenfelder JD Sundt TM Jr: Cerebral ATP and lactate levels in the squirrel monkey following occlusion of the middle cerebral artery. Stroke 5:319–326 1971

    • Search Google Scholar
    • Export Citation
  • 82.

    Michenfelder JDTheye RA: The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33:4304391970Michenfelder JD Theye RA: The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation. Anesthesiology 33:430–439 1970

    • Search Google Scholar
    • Export Citation
  • 83.

    Mies GAuer LMEbhardt Get al: Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14:22271983Mies G Auer LM Ebhardt G et al: Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14:22–27 1983

    • Search Google Scholar
    • Export Citation
  • 84.

    Mies GIshimaru SXie Yet al: Ischemic thresholds of brain protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:7537611991Mies G Ishimaru S Xie Y et al: Ischemic thresholds of brain protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 11:753–761 1991

    • Search Google Scholar
    • Export Citation
  • 85.

    Miller RJ: Multiple calcium channels and neuronal function. Science 235:46521987Miller RJ: Multiple calcium channels and neuronal function. Science 235:46–52 1987

    • Search Google Scholar
    • Export Citation
  • 86.

    Molinari GFLaurent JP: A classification of experimental models of brain ischemia. Stroke 7:14171976Molinari GF Laurent JP: A classification of experimental models of brain ischemia. Stroke 7:14–17 1976

    • Search Google Scholar
    • Export Citation
  • 87.

    Mourre CAri YBBarnardi Het al: Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486:1591641989Mourre C Ari YB Barnardi H et al: Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486:159–164 1989

    • Search Google Scholar
    • Export Citation
  • 88.

    Murphy SNMiller RJ: A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85:873787411988Murphy SN Miller RJ: A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. Proc Natl Acad Sci USA 85:8737–8741 1988

    • Search Google Scholar
    • Export Citation
  • 89.

    Mutch WAHansen AJ: Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17271984Mutch WA Hansen AJ: Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17–27 1984

    • Search Google Scholar
    • Export Citation
  • 90.

    Nagasawa HKogure K: Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:103710431989Nagasawa H Kogure K: Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043 1989

    • Search Google Scholar
    • Export Citation
  • 91.

    Nahorski S: Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 11:4444481988Nahorski S: Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci 11:444–448 1988

    • Search Google Scholar
    • Export Citation
  • 92.

    Nakai HYamamoto YLDiksic Met al: Triple-tracer autoradiography demonstrates effects of hyperglycemia on cerebral blood flow, pH, and glucose utilization in cerebral ischemia of rats. Stroke 19:7647721988Nakai H Yamamoto YL Diksic M et al: Triple-tracer autoradiography demonstrates effects of hyperglycemia on cerebral blood flow pH and glucose utilization in cerebral ischemia of rats. Stroke 19:764–772 1988

    • Search Google Scholar
    • Export Citation
  • 93.

    Naritomi HSasaki MKanashiro Met al: Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23 Na nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 8:16231988Naritomi H Sasaki M Kanashiro M et al: Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23 Na nuclear magnetic resonance spectroscopy. J Cereb Blood Flow Metab 8:16–23 1988

    • Search Google Scholar
    • Export Citation
  • 94.

    Nedergaard M: Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 73:2672741987Nedergaard M: Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 73:267–274 1987

    • Search Google Scholar
    • Export Citation
  • 95.

    Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79851987Nedergaard M: Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79–85 1987

    • Search Google Scholar
    • Export Citation
  • 96.

    Nedergaard MDiemer NH: Focal ischemia of the rat brain, with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:1311371987Nedergaard M Diemer NH: Focal ischemia of the rat brain with special reference to the influence of plasma glucose concentration. Acta Neuropathol 73:131–137 1987

    • Search Google Scholar
    • Export Citation
  • 97.

    Nedergaard MGjedde ADiemer N: Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. J Cereb Blood Flow Metab 6:4144241986Nedergaard M Gjedde A Diemer N: Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization glucose content and blood flow. J Cereb Blood Flow Metab 6:414–424 1986

    • Search Google Scholar
    • Export Citation
  • 98.

    Nedergaard MVorstrup SAstrup J: Cell density in the border zone around old small human brain infarcts. Stroke 17:112911371986Nedergaard M Vorstrup S Astrup J: Cell density in the border zone around old small human brain infarcts. Stroke 17:1129–1137 1986

    • Search Google Scholar
    • Export Citation
  • 99.

    Nicholls DAttwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:4624681990Nicholls D Attwell D: The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468 1990

    • Search Google Scholar
    • Export Citation
  • 100.

    Nicholson CBruggencate GTSteinberg Ret al: Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci USA 74:128712901977Nicholson C Bruggencate GT Steinberg R et al: Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc Natl Acad Sci USA 74:1287–1290 1977

    • Search Google Scholar
    • Export Citation
  • 101.

    Nicoletti FWroblewski JTNovelli Aet al: The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6:190519111986Nicoletti F Wroblewski JT Novelli A et al: The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6:1905–1911 1986

    • Search Google Scholar
    • Export Citation
  • 102.

    Nordström CHSiesjö BK: Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand 104:2712801978Nordström CH Siesjö BK: Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia. Acta Physiol Scand 104:271–280 1978

    • Search Google Scholar
    • Export Citation
  • 103.

    Nowak LBregestovski PAscher Pet al: Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:4624651984 (Letter)Nowak L Bregestovski P Ascher P et al: Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 104.

    Obrenovitch TScheller DMatsumoto Tet al: A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol 64:112511331990Obrenovitch T Scheller D Matsumoto T et al: A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol 64:1125–1133 1990

    • Search Google Scholar
    • Export Citation
  • 105.

    Obrenovitch TPGarofalo OHarris RJet al: Brain tissue concentrations of ATP, phosphocreatine, lactate and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 8:8668741988Obrenovitch TP Garofalo O Harris RJ et al: Brain tissue concentrations of ATP phosphocreatine lactate and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 8:866–874 1988

    • Search Google Scholar
    • Export Citation
  • 106.

    Pickard JDMurray GDIllingworth Ret al: Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J 298:6366421989Pickard JD Murray GD Illingworth R et al: Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J 298:636–642 1989

    • Search Google Scholar
    • Export Citation
  • 107.

    Reichardt LFKelly RB: A molecular description of nerve terminal function. Annu Rev Biochem 52:8719261983Reichardt LF Kelly RB: A molecular description of nerve terminal function. Annu Rev Biochem 52:871–926 1983

    • Search Google Scholar
    • Export Citation
  • 108.

    Ritchie JKeynes RBolis L: Ion Channels in Neural Membranes. New York: Alan R Liss1986Ritchie J Keynes R Bolis L: Ion Channels in Neural Membranes. New York: Alan R Liss 1986

    • Search Google Scholar
    • Export Citation
  • 109.

    Rothman SMOlney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:1051111986Rothman SM Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111 1986

    • Search Google Scholar
    • Export Citation
  • 110.

    Sako KKobatake KYamamoto YLet al: Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16:8288341985Sako K Kobatake K Yamamoto YL et al: Correlation of local cerebral blood flow glucose utilization and tissue pH following a middle cerebral artery occlusion in the rat. Stroke 16:828–834 1985

    • Search Google Scholar
    • Export Citation
  • 111.

    Sanchez-Armass SBlaustein MP: Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252:C595C6031987Sanchez-Armass S Blaustein MP: Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Physiol 252:C595–C603 1987

    • Search Google Scholar
    • Export Citation
  • 112.

    Sharbrough FWMessick JM JrSundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:6746831973Sharbrough FW Messick JM Jr Sundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:674–683 1973

    • Search Google Scholar
    • Export Citation
  • 113.

    Siesjö B: Brain Energy Metabolism. London: John Wiley & Sons1978Siesjö B: Brain Energy Metabolism. London: John Wiley & Sons 1978

  • 114.

    Siesjö B: Calcium, excitotoxins, and brain damage. News Physiol Sci 5:1201251990Siesjö B: Calcium excitotoxins and brain damage. News Physiol Sci 5:120–125 1990

    • Search Google Scholar
    • Export Citation
  • 115.

    Siesjö B: The role of calcium in cell death in Price DAguayo AThoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons1992 pp 3559Siesjö B: The role of calcium in cell death in Price D Aguayo A Thoenen H (eds): Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. London: John Wiley & Sons 1992 pp 35–59

    • Search Google Scholar
    • Export Citation
  • 116.

    Siesjö BEkholm AKatsura Ket al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel block in Krieglstein JOberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft1990 pp 319323Siesjö B Ekholm A Katsura K et al: The type of ischemia determines the pathophysiology of brain lesions and the therapeutic response to calcium channel block in Krieglstein J Oberpichler H (eds): Pharmacology of Cerebral Ischemia. Stuttgart: Wissenschaftliche Verlagsgesellschaft 1990 pp 319–323

    • Search Google Scholar
    • Export Citation
  • 117.

    Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:31881988Siesjö BK: Acidosis and ischemic brain damage. Neurochem Pathol 9:31–88 1988

    • Search Google Scholar
    • Export Citation
  • 118.

    Siesjö BK: Calcium in the brain under physiological and pathological conditions. Eur Neurol 30 (Suppl 2):391990Siesjö BK: Calcium in the brain under physiological and pathological conditions. Eur Neurol 30 (Suppl 2):3–9 1990

    • Search Google Scholar
    • Export Citation
  • 119.

    Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:1551851981Siesjö BK: Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185 1981

    • Search Google Scholar
    • Export Citation
  • 120.

    Siesjö BK: Cerebral circulation and metabolism. J Neurosnrg 60:8839081984Siesjö BK: Cerebral circulation and metabolism. J Neurosnrg 60:883–908 1984

    • Search Google Scholar
    • Export Citation
  • 121.

    Siesjö BK: Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:6386611988Siesjö BK: Historical overview. Calcium ischemia and death of brain cells. Ann NY Acad Sci 522:638–661 1988

    • Search Google Scholar
    • Export Citation
  • 122.

    Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:9549631988Siesjö BK: Mechanisms of ischemic brain damage. Crit Care Med 16:954–963 1988

    • Search Google Scholar
    • Export Citation
  • 123.

    Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. Part II. Mechanisms of damage and treatment. J Neurosurg 77 (In press 1992)Siesjö BK: Pathophysiology and treatment of focal cerebral ischemia. Part II. Mechanisms of damage and treatment. J Neurosurg 77 (In press 1992)

    • Search Google Scholar
    • Export Citation
  • 124.

    Siesjö BKAgardh CDBengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:1652111989Siesjö BK Agardh CD Bengtsson F: Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211 1989

    • Search Google Scholar
    • Export Citation
  • 125.

    Siesjö BKBengtsson F: Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:1271401989Siesjö BK Bengtsson F: Calcium fluxes calcium antagonists and calcium-related pathology in brain ischemia hypoglycemia and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140 1989

    • Search Google Scholar
    • Export Citation
  • 126.

    Siesjö BKBengtsson FGrampp Wet al: Calcium, excitotoxins, and neuronal death in the brain. Ann NY Acad Sci 568:2342511989Siesjö BK Bengtsson F Grampp W et al: Calcium excitotoxins and neuronal death in the brain. Ann NY Acad Sci 568:234–251 1989

    • Search Google Scholar
    • Export Citation
  • 127.

    Siesjö BKMemezawa HSmith ML: Fundamental and Clinical Pharmacology. (In press 1992)Siesjö BK Memezawa H Smith ML: Fundamental and Clinical Pharmacology. (In press 1992)

    • Search Google Scholar
    • Export Citation
  • 128.

    Siesjö BKNilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest 27:83961971Siesjö BK Nilsson L: The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest 27:83–96 1971

    • Search Google Scholar
    • Export Citation
  • 129.

    Siesjö BKZwetnow NN: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:1141241970Siesjö BK Zwetnow NN: The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:114–124 1970

    • Search Google Scholar
    • Export Citation
  • 130.

    Silver IAErecinska M: Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:8378661990Silver IA Erecinska M: Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95:837–866 1990

    • Search Google Scholar
    • Export Citation
  • 131.

    Sladeczek FRecasens MBockaert J: A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci 11:5455491988Sladeczek F Recasens M Bockaert J: A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci 11:545–549 1988

    • Search Google Scholar
    • Export Citation
  • 132.

    Smith MLAuer RNSiesjö BK: The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:3193321984Smith ML Auer RN Siesjö BK: The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:319–332 1984

    • Search Google Scholar
    • Export Citation
  • 133.

    Smith MLvon Hanwehr RSiesjö BK: Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6:5745831986Smith ML von Hanwehr R Siesjö BK: Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6:574–583 1986

    • Search Google Scholar
    • Export Citation
  • 134.

    Strong AJTomlinson BEVenables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:7557581984 (Letter)Strong AJ Tomlinson BE Venables GS: Ischemic penumbra results in incomplete infarction: is the sleeping beauty dead? Stroke 15:755–758 1984 (Letter)

    • Search Google Scholar
    • Export Citation
  • 135.

    Strong AJTomlinson BEVenables GSet al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:971081983Strong AJ Tomlinson BE Venables GS et al: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology water content and in vitro neurotransmitter uptake. J Cereb Blood Flow Metab 3:97–108 1983

    • Search Google Scholar
    • Export Citation
  • 136.

    Strong AJVenables GSGibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Flow Metab 3:86961983Strong AJ Venables GS Gibson G: The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 1. Topography of changes in blood flow potassium ion activity and EEG. J Cereb Blood Flow Metab 3:86–96 1983

    • Search Google Scholar
    • Export Citation
  • 137.

    Sugiyama HIto IHirono C: A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:5315331987 (Letter)Sugiyama H Ito I Hirono C: A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533 1987 (Letter)

    • Search Google Scholar
    • Export Citation
  • 138.

    Sundt TM JrGrant WCGarcia JH: Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31:3113221969Sundt TM Jr Grant WC Garcia JH: Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31:311–322 1969

    • Search Google Scholar
    • Export Citation
  • 139.

    Sundt TM JrMichenfelder JD: Focal transient cerebral ischemia in the squirrel monkey. Effect on brain adenosine triphosphate and lactate levels with electrocorticographic and pathologic correlation. Circ Res 30:7037121972Sundt TM Jr Michenfelder JD: Focal transient cerebral ischemia in the squirrel monkey. Effect on brain adenosine triphosphate and lactate levels with electrocorticographic and pathologic correlation. Circ Res 30:703–712 1972

    • Search Google Scholar
    • Export Citation
  • 140.

    Symon LBranston NMChikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:1841911979Symon L Branston NM Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:184–191 1979

    • Search Google Scholar
    • Export Citation
  • 141.

    Symon LBranston NMStrong AJ: Autoregulation in acute focal ischemia. An experimental study. Stroke 7:5475541976Symon L Branston NM Strong AJ: Autoregulation in acute focal ischemia. An experimental study. Stroke 7:547–554 1976

    • Search Google Scholar
    • Export Citation
  • 142.

    Symon LPasztor EBranston NM: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5:3553641974Symon L Pasztor E Branston NM: The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5:355–364 1974

    • Search Google Scholar
    • Export Citation
  • 143.

    Tamura AAsano TSano K: Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11:4874931980Tamura A Asano T Sano K: Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11:487–493 1980

    • Search Google Scholar
    • Export Citation
  • 144.

    Tamura AGraham DIMcCulloch Jet al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61691981Tamura A Graham DI McCulloch J et al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69 1981

    • Search Google Scholar
    • Export Citation
  • 145.

    Trojaborg WBoysen G: Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:61691973Trojaborg W Boysen G: Relation between EEG regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:61–69 1973

    • Search Google Scholar
    • Export Citation
  • 146.

    Tsien RWLipscombe DMadison DVet al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:4314381988Tsien RW Lipscombe D Madison DV et al: Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438 1988

    • Search Google Scholar
    • Export Citation
  • 147.

    Tyson GWTeasdale GMGraham DIet al: Focal cerebral ischemia in the rat: topography of hemodynamic and histopathological changes. Ann Neurol 15:5595671984Tyson GW Teasdale GM Graham DI et al: Focal cerebral ischemia in the rat: topography of hemodynamic and histopathological changes. Ann Neurol 15:559–567 1984

    • Search Google Scholar
    • Export Citation
  • 148.

    Uematsu DGreenberg JHReivich Met al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:3673741988Uematsu D Greenberg JH Reivich M et al: In vivo fluorometric measurement of changes in cytosolic free calcium from the cat cortex during anoxia. J Cereb Blood Flow Metab 8:367–374 1988

    • Search Google Scholar
    • Export Citation
  • 149.

    von Hanwehr RSmith MLSiesjö BK: Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46:3313391986von Hanwehr R Smith ML Siesjö BK: Extra- and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46:331–339 1986

    • Search Google Scholar
    • Export Citation
  • 150.

    Vyskočil FKříž NBureš J: Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:2552591972Vyskočil F Kříž N Bureš J: Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259 1972

    • Search Google Scholar
    • Export Citation
  • 151.

    Waltz AG: Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex. The phenomena of autoregulation and luxury perfusion. Neurology 18:6136211968Waltz AG: Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex. The phenomena of autoregulation and luxury perfusion. Neurology 18:613–621 1968

    • Search Google Scholar
    • Export Citation
  • 152.

    Watkins JCEvans RH: Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:1652041981Watkins JC Evans RH: Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204 1981

    • Search Google Scholar
    • Export Citation
  • 153.

    Watkins JCOlverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:2652721987Watkins JC Olverman HJ: Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272 1987

    • Search Google Scholar
    • Export Citation
  • 154.

    Weinstein PRAnderson GGTelles DA: Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats. Stroke 17:3183241986Weinstein PR Anderson GG Telles DA: Neurological deficit and cerebral infarction after temporary middle cerebral artery occlusion in unanesthetized cats. Stroke 17:318–324 1986

    • Search Google Scholar
    • Export Citation
  • 155.

    Westenbroek REAhlijanian MKCatterall WA: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:2812841990 (Letter)Westenbroek RE Ahlijanian MK Catterall WA: Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284 1990 (Letter)

    • Search Google Scholar
    • Export Citation
  • 156.

    Wiebers DOAdams HP JrWhisnant JP: Animal models of stroke: are they relevant to human disease? Stroke 21:131990Wiebers DO Adams HP Jr Whisnant JP: Animal models of stroke: are they relevant to human disease? Stroke 21:1–3 1990

    • Search Google Scholar
    • Export Citation
  • 157.

    Wieloch THarris RJSymon Let al: Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43:1601681984Wieloch T Harris RJ Symon L et al: Influence of severe hypoglycemia on brain extracellular calcium and potassium activities energy and phospholipid metabolism. J Neurochem 43:160–168 1984

    • Search Google Scholar
    • Export Citation
  • 158.

    Wieloch TSiesjö BK: Ischemic brain injury: the importance of calcium, lipolytic activities, and free fatty acids. Pathol Biol 30:2692771982Wieloch T Siesjö BK: Ischemic brain injury: the importance of calcium lipolytic activities and free fatty acids. Pathol Biol 30:269–277 1982

    • Search Google Scholar
    • Export Citation
  • 159.

    Xie YMies GHossmann KA: Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20:6206261989Xie Y Mies G Hossmann KA: Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke 20:620–626 1989

    • Search Google Scholar
    • Export Citation
TrendMD
Cited By
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 475 458 17
Full Text Views 286 140 5
PDF Downloads 147 67 4
EPUB Downloads 0 0 0
PubMed
Google Scholar