Madreporic coral: a new bone graft substitute for cranial surgery

Restricted access

✓ Since 1985, the authors have been using madreporic coral fragments (genera Porites) as a bone graft substitute. Of the 167 coral grafts implanted, 150 were coral “corks” used to obliterate burr holes (diameter 10 mm), five were large implants (length 20 to 40 mm) to repair skull defects, and 12 were coral blocks to reconstruct the floor of the anterior cranial fossa. Previous experimental studies suggested that coral grafts would be well tolerated and become partially reossified as the calcific skeleton was resorbed. The authors describe their experience and detail the main biological properties of these materials, which appear to be very promising for use in cranial reconstructive surgery.

Article Information

Contributor Notes

Address reprint requests to: Professor F. X. Roux, Neurosurgical Department, C.H. Sainte-Anne, 1, rue Cabanis, 75014 Paris, France.
Headings
References
  • 1.

    Anderson KJ: End-point of processed heterogenous, autogenous and homogenous transplants in the human: a histologic study. Clin Orthop 33:2202311964Anderson KJ: End-point of processed heterogenous autogenous and homogenous transplants in the human: a histologic study. Clin Orthop 33:220–231 1964

    • Search Google Scholar
    • Export Citation
  • 2.

    Bajpai PK: Biodegradable scaffolds in orthopedics, oral and maxillo-facial surgery in Rubin LR (ed): Biomaterials in Reconstructive Surgery. St Louis: CV Mosby1982 pp 312328Bajpai PK: Biodegradable scaffolds in orthopedics oral and maxillo-facial surgery in Rubin LR (ed): Biomaterials in Reconstructive Surgery. St Louis: CV Mosby 1982 pp 312–328

    • Search Google Scholar
    • Export Citation
  • 3.

    Chamberlain JA Jr: Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4:4194351978 sChamberlain JA Jr: Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4:419–435 1978

    • Search Google Scholar
    • Export Citation
  • 4.

    Chiroff RTWhite EWWeber Net al: Tissue ingrowth of replamineform implants. J Biomed Mater Res 6:29451975Chiroff RT White EW Weber N et al: Tissue ingrowth of replamineform implants. J Biomed Mater Res 6:29–45 1975

    • Search Google Scholar
    • Export Citation
  • 5.

    Derome P: Les tumeurs sphéno-ethmoïdales. Possibilités d'exérèse et de réparation chirurgicales. Neurochirurgie 18 (Suppl 1)):11641972Derome P: Les tumeurs sphéno-ethmoïdales. Possibilités d'exérèse et de réparation chirurgicales. Neurochirurgie 18(Suppl 1):1–164 1972

    • Search Google Scholar
    • Export Citation
  • 6.

    Enneking WFMorris JL: Human autologous bone transplants. Clin Orthop 87:28351972Enneking WF Morris JL: Human autologous bone transplants. Clin Orthop 87:28–35 1972

    • Search Google Scholar
    • Export Citation
  • 7.

    Gay CVMueller WJ: Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science 183:4324341974Gay CV Mueller WJ: Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science 183:432–434 1974

    • Search Google Scholar
    • Export Citation
  • 8.

    Guillemin GFournié JPatat JLet al: Contribution à l'étude du devenir d'un fragment de squelette de corail madréporaire implanté dans la diaphyse des os longs chez le chien. C R Acad Sci (III) 293:3713761981Guillemin G Fournié J Patat JL et al: Contribution à l'étude du devenir d'un fragment de squelette de corail madréporaire implanté dans la diaphyse des os longs chez le chien. C R Acad Sci (III) 293:371–376 1981

    • Search Google Scholar
    • Export Citation
  • 9.

    Guillemin GPatat JLFournie Jet al: The use of coral as a bone graft substitute. J Biomed Mater Res 21:5575671987Guillemin G Patat JL Fournie J et al: The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567 1987

    • Search Google Scholar
    • Export Citation
  • 10.

    Holmes RE: Bone regeneration within a coralline hydroxyapatite implant. Plast Reconst Surg 63:6266331979Holmes RE: Bone regeneration within a coralline hydroxyapatite implant. Plast Reconst Surg 63:626–633 1979

    • Search Google Scholar
    • Export Citation
  • 11.

    Levet YJost G: L'utilisation de squelettes de coraux madréporaires en chirurgie réparatrice. Ann Chir Plast Esthet 28:1801811983Levet Y Jost G: L'utilisation de squelettes de coraux madréporaires en chirurgie réparatrice. Ann Chir Plast Esthet 28:180–181 1983

    • Search Google Scholar
    • Export Citation
  • 12.

    Marchac DCochignon JClay C: La réfection du toit de l'orbite par dédoublement du volet frontal. Nouv Presse Med 2:241324141973Marchac D Cochignon J Clay C: La réfection du toit de l'orbite par dédoublement du volet frontal. Nouv Presse Med 2:2413–2414 1973

    • Search Google Scholar
    • Export Citation
  • 13.

    Patel AHonnart FGuillemin Get al: Colonisation osseuse de matériaux minéraux. Rev Chir Orthop 66 (Suppl 2):63641980Patel A Honnart F Guillemin G et al: Colonisation osseuse de matériaux minéraux. Rev Chir Orthop 66 (Suppl 2):63–64 1980

    • Search Google Scholar
    • Export Citation
  • 14.

    Souyris FChevalier JPPayrot Cet al: Bilan après ans d'expérimentation du corail au titre d'implant osseux. Ann Chir Plast Esthet 29:2562601984Souyris F Chevalier JP Payrot C et al: Bilan après ans d'expérimentation du corail au titre d'implant osseux. Ann Chir Plast Esthet 29:256–260 1984

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 150 135 6
Full Text Views 162 89 4
PDF Downloads 98 24 1
EPUB Downloads 0 0 0
PubMed
Google Scholar