Experimental intracerebral mass: time-related effects on local cerebral blood flow

Thomas A. Kingman M.D.1, A. David Mendelow Ph.D., F.R.C.S.1, David I. Graham Ph.D., F.R.C.Path.1, and Graham M. Teasdale F.R.C.S., M.R.C.P.1
View More View Less
  • 1 Departments of Neurosurgery and Neuropathology, University of Glasgow, Glasgow, Scotland
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

✓ Cerebral blood flow (CBF) was measured at different times during the first 150 minutes following an experimental space-occupying lesion produced with a 50-µl microballoon in rats. Local CBF was measured with the carbon-14-labeled iodoantipyrine quantitative autoradiographic technique. A region of local ischemia developed around the mass, while the remote effects of the mass were minimal. The focal ischemic lesion enlarged with time, and simulated removal of the lesion within this design did not alleviate the ischemia.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1.

    Astrup J, , Symon L, & Branston NM, et al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:5157, 1977 Astrup J, Symon L, Branston NM, et al: Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57, 1977

    • Search Google Scholar
    • Export Citation
  • 2.

    Bell BA, , Symon L, & Branston NM: CBF and time thresholds for the formation of ischemic cerebral edema, and effect of reperfusion in baboons. J Neurosurg 62:3141, 1985 Bell BA, Symon L, Branston NM: CBF and time thresholds for the formation of ischemic cerebral edema, and effect of reperfusion in baboons. J Neurosurg 62:31–41, 1985

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Branston NM, , Symon L, & Crockard HA, et al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195208, 1974 Branston NM, Symon L, Crockard HA, et al: Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195–208, 1974

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Crockard A, , Iannotti F, & Hunstock AT, et al: Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11:494498, 1980 Crockard A, Iannotti F, Hunstock AT, et al: Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11:494–498, 1980

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Crockard A, , Kang J, & Ladds G: A model of focal cortical contusion in gerbils. J Neurosurg 57:203209, 1982 Crockard A, Kang J, Ladds G: A model of focal cortical contusion in gerbils. J Neurosurg 57:203–209, 1982

    • Search Google Scholar
    • Export Citation
  • 6.

    Harris RJ, & Symon L: Extracellular pH, potassium, and calcium activities in progressive ischemia of rat cortex. J Cereb Blood Flow Metab 4:178186, 1984 Harris RJ, Symon L: Extracellular pH, potassium, and calcium activities in progressive ischemia of rat cortex. J Cereb Blood Flow Metab 4:178–186, 1984

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Iannotti F, , Hoff JT, & Schielke FP: Brain tissue pressure in focal cerebral ischemia. J Neurosurg 62:8389, 1985 Iannotti F, Hoff JT, Schielke FP: Brain tissue pressure in focal cerebral ischemia. J Neurosurg 62:83–89, 1985

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kety SS: The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:141, 1951 Kety SS: The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41, 1951

    • Search Google Scholar
    • Export Citation
  • 9.

    Kingman TA, , Mendelow AD, & Graham DI, et al: Experimental intracerebral mass: description model, intracranial pressure changes and neuropathology. J Neuropathol Exp Neurol (In press, 1987)Kingman TA, Mendelow AD, Graham DI, et al: Experimental intracerebral mass: description model, intracranial pressure changes and neuropathology. J Neuropathol Exp Neurol (In press, 1987)

    • Search Google Scholar
    • Export Citation
  • 10.

    Mendelow AD, , Bullock R, & Teasdale GM, et al: Intracranial haemorrhage induced at arterial pressure in the rat. Part 2: Short term changes in local cerebral blood flow measured by autoradiography. Neurol Res 6:189193, 1984 Mendelow AD, Bullock R, Teasdale GM, et al: Intracranial haemorrhage induced at arterial pressure in the rat. Part 2: Short term changes in local cerebral blood flow measured by autoradiography. Neurol Res 6:189–193, 1984

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mizukami M, & Tazawa T: Theoretical background for surgical treatment in hypertensive intracerebral hemorrhage, in Mizukami M, , Kogure K, & Kanaya H, et al (eds): Hypertensive Intracerebral Hemorrhage. New York: Raven Press, 1983, pp 239247 Mizukami M, Tazawa T: Theoretical background for surgical treatment in hypertensive intracerebral hemorrhage, in Mizukami M, Kogure K, Kanaya H, et al (eds): Hypertensive Intracerebral Hemorrhage. New York: Raven Press, 1983, pp 239–247

    • Search Google Scholar
    • Export Citation
  • 12.

    Naritomi H: Transtentorial diaschisis: reduction of cerebellar blood flow caused by supratentorial local cerebral ischemia in the gerbil. Stroke 14:213218, 1983 Naritomi H: Transtentorial diaschisis: reduction of cerebellar blood flow caused by supratentorial local cerebral ischemia in the gerbil. Stroke 14:213–218, 1983

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nath FP, , Jenkins A, & Mendelow AD, et al: Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg 65:697703, 1986 Nath FP, Jenkins A, Mendelow AD, et al: Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg 65:697–703, 1986

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sakurada O, , Kennedy C, & Jehle J, et al: Measurement of local cerebral blood flow with iodo(14C)antipyrine. Am J Physiol 234 (1):H59H66, 1978 Sakurada O, Kennedy C, Jehle J, et al: Measurement of local cerebral blood flow with iodo(14C)antipyrine. Am J Physiol 234(1):H59–H66, 1978

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sharbrough FW, , Messick JM, & Sundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:674683, 1973 Sharbrough FW, Messick JM, Sundt TM Jr: Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4:674–683, 1973

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sinar EJ, , Mendelow AD, & Graham DI, et al: Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg 66:568576, 1987 Sinar EJ, Mendelow AD, Graham DI, et al: Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg 66:568–576, 1987

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sussman BJ, , Barber JB, & Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg 41:177186, 1974 Sussman BJ, Barber JB, Goald H: Experimental intracerebral hematoma. Reduction of oxygen tension in brain and cerebrospinal fluid. J Neurosurg 41:177–186, 1974

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Symon L, , Branston NM, & Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:184191, 1979 Symon L, Branston NM, Chikovani O: Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke 10:184–191, 1979

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tamura A, , Graham DI, & McCulloch J, et al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:6169, 1981 Tamura A, Graham DI, McCulloch J, et al: Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69, 1981

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Trojaborg W, & Boysen G: Relation between EEG, regional cerebral blood flow and internal carotid stump pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:6169, 1973 Trojaborg W, Boysen G: Relation between EEG, regional cerebral blood flow and internal carotid stump pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol 34:61–69, 1973

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 302 49 7
Full Text Views 174 1 0
PDF Downloads 52 0 0
EPUB Downloads 0 0 0