Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit

Restricted access

✓ Artificial cerebrospinal fluid (CSF) containing radioisotope iodinated (125I) serum albumin (RISA) and either blue dextran or indigo carmine was given to white New Zealand rabbits over 4 hours. In one group it was given by ventriculocisternal perfusion, in one by ventricular infusion, and in one by cisterna magna infusion. Blood was sampled continuously from the superior sagittal sinus (SSS) or intermittently from the systemic arterial circulation. Removal of CSF from the cisterna magna during the ventriculocisternal perfusion kept the intracranial pressure (ICP) at 0 to 5 torr, whereas ventricular or cisterna magna infusion raised the ICP to 20 to 30 torr and 15 to 20 torr, respectively. In the two groups with raised ICP, an increased concentration of RISA was present in the optic nerves, olfactory bulbs, episcleral tissue, and deep cervical lymph nodes; but this was not found in the group with normal ICP. In all three groups, the concentration of RISA in the SSS blood was the same as in the systemic arterial blood. The concentration gradient of RISA across the cerebral cortex was similar in both the ventriculocisternal perfusion and the ventricular infusion groups. With cisterna magna infusion, the concentration of RISA was the same on the cortical surface and less in the ventricles compared with the ventricular infusion. It is concluded that, with elevated ICP, CSF drained via pathways that are less evident under normal pressure. Drainage of CSF was similar irrespective of whether the infusion site was the ventricles or cisterna magna. It did not appear that acute dilatation of the ventricles during ventricular infusion compromised the subarachnoid space over the surface of the hemisphere, as the concentration of RISA on the convexities and in the SSS blood did not significantly differ between the groups. Transcortical bulk transfer of CSF was not evident with raised ICP.

Article Information

Contributor Notes

Address reprint requests to: J. Gordon McComb, M.D., Division of Neurological Surgery, Childrens Hospital of Los Angeles, 4650 Sunset Boulevard, P. O. Box 54700, Los Angeles, California 90054.
Headings
References
  • 1.

    Arnold WRitter RWagner WH: Quantitative studies on the drainage of the cerebrospinal fluid into the lymphatic system. Acta Otolaryngol 76:1561611973Arnold W Ritter R Wagner WH: Quantitative studies on the drainage of the cerebrospinal fluid into the lymphatic system. Acta Otolaryngol 76:156–161 1973

    • Search Google Scholar
    • Export Citation
  • 2.

    Bering EA JrSato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:105010631963Bering EA Jr Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063 1963

    • Search Google Scholar
    • Export Citation
  • 3.

    Bowsher D: Pathways of absorption of protein from the cerebrospinal fluid: an autoradiographic study in the cat. Anat Rec 128:23391957Bowsher D: Pathways of absorption of protein from the cerebrospinal fluid: an autoradiographic study in the cat. Anat Rec 128:23–39 1957

    • Search Google Scholar
    • Export Citation
  • 4.

    Bradbury MWB: Proportion of cerebrospinal fluid draining into jugular lymphatic trunks of the cat. J Physiol (Lond) 276:67P68P1978 (Abstract)Bradbury MWB: Proportion of cerebrospinal fluid draining into jugular lymphatic trunks of the cat. J Physiol (Lond) 276:67P–68P 1978 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 5.

    Bradbury MWBCole DF: The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol (Lond) 299:3533651980Bradbury MWB Cole DF: The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol (Lond) 299:353–365 1980

    • Search Google Scholar
    • Export Citation
  • 6.

    Brierley JBField EJ: The connexions of the spinal subarachnoid space with the lymphatic system. J Anat 82:1531661948Brierley JB Field EJ: The connexions of the spinal subarachnoid space with the lymphatic system. J Anat 82:153–166 1948

    • Search Google Scholar
    • Export Citation
  • 7.

    Butler AB: Personal communication1979Butler AB: Personal communication 1979

  • 8.

    Casley-Smith JRFöldi-Börcsök EFöldi M: The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 57:1791881976Casley-Smith JR Földi-Börcsök E Földi M: The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 57:179–188 1976

    • Search Google Scholar
    • Export Citation
  • 9.

    Clark WM: Topics in Physical Chemistry. Baltimore: Williams and Wilkins1948Clark WM: Topics in Physical Chemistry. Baltimore: Williams and Wilkins 1948

    • Search Google Scholar
    • Export Citation
  • 10.

    Courtice FCSimmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29:2552631951Courtice FC Simmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29:255–263 1951

    • Search Google Scholar
    • Export Citation
  • 11.

    Crank J: Mathematics of Diffusion. London: Oxford University Press1956Crank J: Mathematics of Diffusion. London: Oxford University Press 1956

    • Search Google Scholar
    • Export Citation
  • 12.

    Davson HDomer FRHollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain 96:3293361973Davson H Domer FR Hollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain 96:329–336 1973

    • Search Google Scholar
    • Export Citation
  • 13.

    DiChiro GStein SCHarrington T: Spontaneous cerebrospinal fluid rhinorrhea in normal dogs. Radioisotope studies of an alternative pathway of CSF drainage. J Neuropathol Exp Neurol 31:4474531972Di Chiro G Stein SC Harrington T: Spontaneous cerebrospinal fluid rhinorrhea in normal dogs. Radioisotope studies of an alternative pathway of CSF drainage. J Neuropathol Exp Neurol 31:447–453 1972

    • Search Google Scholar
    • Export Citation
  • 14.

    Eisenberg HMMcLennan JEWelch K: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 41:20281974Eisenberg HM McLennan JE Welch K: Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 41:20–28 1974

    • Search Google Scholar
    • Export Citation
  • 15.

    Field EJBrierley JB: The retro-orbital tissues as a site of outflow of cerebrospinal fluid. Proc R Soc Lond 42:4474501949Field EJ Brierley JB: The retro-orbital tissues as a site of outflow of cerebrospinal fluid. Proc R Soc Lond 42:447–450 1949

    • Search Google Scholar
    • Export Citation
  • 16.

    Földi MCsillik BZoltan ÖT: Lymphatic drainage of the brain. Experientia 24:128312871968Földi M Csillik B Zoltan ÖT: Lymphatic drainage of the brain. Experientia 24:1283–1287 1968

    • Search Google Scholar
    • Export Citation
  • 17.

    Jackson RTTiggesJArnold W: Subarachnoid space of the CNS, nasal mucosa and lymphatic system. Arch Otolaryngol 105:1801841979Jackson RT Tigges J Arnold W: Subarachnoid space of the CNS nasal mucosa and lymphatic system. Arch Otolaryngol 105:180–184 1979

    • Search Google Scholar
    • Export Citation
  • 18.

    James AE JrMcComb JGChristian Jet al: The effect of cerebrospinal fluid pressure on the size of drainage pathways. Neurology 26:6596631976James AE Jr McComb JG Christian J et al: The effect of cerebrospinal fluid pressure on the size of drainage pathways. Neurology 26:659–663 1976

    • Search Google Scholar
    • Export Citation
  • 19.

    James AE JrStrecker EPSperber Eet al: An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiology 111:1431461974James AE Jr Strecker EP Sperber E et al: An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement. Radiology 111:143–146 1974

    • Search Google Scholar
    • Export Citation
  • 20.

    Key EAHRetzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson and Wallin1875Key EAH Retzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson and Wallin 1875

    • Search Google Scholar
    • Export Citation
  • 21.

    Mann JDButler ABJohnson RNet al: Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J Neurosurg 50:3433481979Mann JD Butler AB Johnson RN et al: Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. J Neurosurg 50:343–348 1979

    • Search Google Scholar
    • Export Citation
  • 22.

    McComb JGDavson HHollingsworth JR: Attempted separation of blood-brain and blood-cerebrospinal fluid barriers in the rabbit. Exp Eye Res 26 (Suppl): 3333431977McComb JG Davson H Hollingsworth JR: Attempted separation of blood-brain and blood-cerebrospinal fluid barriers in the rabbit. Exp Eye Res 26 (Suppl):333–343 1977

    • Search Google Scholar
    • Export Citation
  • 23.

    Milhorat THHammock MK: Isotope ventriculography. Interpretation of ventricular size and configuration in hydrocephalus. Arch Neurol 25:181971Milhorat TH Hammock MK: Isotope ventriculography. Interpretation of ventricular size and configuration in hydrocephalus. Arch Neurol 25:1–8 1971

    • Search Google Scholar
    • Export Citation
  • 24.

    Milhorat THHammock MKDi Chiro G: The subarachnoid space in congenital obstructive hydrocephalus. Part 1: Cisternographic findings. J Neurosurg 35:161971Milhorat TH Hammock MK Di Chiro G: The subarachnoid space in congenital obstructive hydrocephalus. Part 1: Cisternographic findings. J Neurosurg 35:1–6 1971

    • Search Google Scholar
    • Export Citation
  • 25.

    Orosz Á Földes IKósa Cet al: Radioactive isotope studies of the connection between the lymph circulation of the nasal mucosa, the cranial cavity and cerebrospinal fluid. Acta Physiol Hung 11:75811957Orosz Á Földes I Kósa C et al: Radioactive isotope studies of the connection between the lymph circulation of the nasal mucosa the cranial cavity and cerebrospinal fluid. Acta Physiol Hung 11:75–81 1957

    • Search Google Scholar
    • Export Citation
  • 26.

    Pollay MDavson H: The passage of certain substances out of the cerebrospinal fluid. Brain 86:1371501963Pollay M Davson H: The passage of certain substances out of the cerebrospinal fluid. Brain 86:137–150 1963

    • Search Google Scholar
    • Export Citation
  • 27.

    Pollay MStevens FAWelch J: Choroid plexus blood flow in rat and rabbit. Acta Neurol Scand 60 (Suppl 72): 5965971979Pollay M Stevens FA Welch J: Choroid plexus blood flow in rat and rabbit. Acta Neurol Scand 60 (Suppl 72):596–597 1979

    • Search Google Scholar
    • Export Citation
  • 28.

    Sahar AHochwald GMSadik ARet al: Cerebrospinal fluid absorption. In animals with experimental obstructive hydrocephalus. Arch Neurol 21:6386441969Sahar A Hochwald GM Sadik AR et al: Cerebrospinal fluid absorption. In animals with experimental obstructive hydrocephalus. Arch Neurol 21:638–644 1969

    • Search Google Scholar
    • Export Citation
  • 29.

    Schurr PHMcLaurin RLIngraham FD: Experimental studies on the circulation of the cerebrospinal fluid, and methods of producing communicating hydrocephalus in the dog. J Neurosurg 10:5155251953Schurr PH McLaurin RL Ingraham FD: Experimental studies on the circulation of the cerebrospinal fluid and methods of producing communicating hydrocephalus in the dog. J Neurosurg 10:515–525 1953

    • Search Google Scholar
    • Export Citation
  • 30.

    Schwalbe G: Der Arachnoidalraum ein Lymphraum und sein Zusammenhang mit den Perichoriodalraum. Zentralbl Med Wiss 7:4654671869Schwalbe G: Der Arachnoidalraum ein Lymphraum und sein Zusammenhang mit den Perichoriodalraum. Zentralbl Med Wiss 7:465–467 1869

    • Search Google Scholar
    • Export Citation
  • 31.

    Van Harreveld ACollewijn HMalhotra SK: Water, electrolytes, and extracellular space in hydrated and dehydrated brains. Am J Physiol 210:2512561966Van Harreveld A Collewijn H Malhotra SK: Water electrolytes and extracellular space in hydrated and dehydrated brains. Am J Physiol 210:251–256 1966

    • Search Google Scholar
    • Export Citation
  • 32.

    Weed LH: Studies on cerebro-spinal fluid. No. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 31:51911914Weed LH: Studies on cerebro-spinal fluid. No. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 31:51–91 1914

    • Search Google Scholar
    • Export Citation
  • 33.

    Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus in Friedlander WJ (ed): Current Reviews. Advances in Neurology Vol 13. New York: Raven Press1975 pp 247332Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus in Friedlander WJ (ed): Current Reviews. Advances in Neurology Vol 13. New York: Raven Press 1975 pp 247–332

    • Search Google Scholar
    • Export Citation
  • 34.

    Wislocki GBPutnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29:3133201921Wislocki GB Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29:313–320 1921

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 172 140 17
Full Text Views 216 42 0
PDF Downloads 86 19 0
EPUB Downloads 0 0 0
PubMed
Google Scholar