Patterns of recurrence according to the extent of resection in patients with IDH–wild-type glioblastoma: a retrospective study

Jihwan Yoo MD1,2,3, Seon-Jin Yoon MD1,4, Kyung Hwan Kim MD, PhD5, In-Ho Jung MD1, Seung Hoon Lim MD1, Woohyun Kim MD1, Hong In Yoon MD, PhD5, Se Hoon Kim MD, PhD6, Kyoung Su Sung MD7, Tae Hoon Roh MD, PhD8, Ju Hyung Moon MD1, Hun Ho Park MD, PhD3, Eui Hyun Kim MD, PhD1, Chang-Ok Suh MD, PhD9, Seok-Gu Kang MD, PhD1,10, and Jong Hee Chang MD, PhD1
View More View Less
  • 1 Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine;
  • | 2 Yonsei University College of Medicine;
  • | 3 Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine;
  • | 4 Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine;
  • | 5 Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine;
  • | 6 Department of Pathology, Yonsei University College of Medicine, Seoul;
  • | 7 Department of Neurosurgery, Dong-A University College of Medicine, Busan;
  • | 8 Department of Neurosurgery, Ajou University School of Medicine, Suwon;
  • | 9 Department of Radiation Oncology, CHA Bundang Medical Center, CHA University College of Medicine, Bundang; and
  • | 10 Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

In glioblastoma (GBM) patients, controlling the microenvironment around the tumor using various treatment modalities, including surgical intervention, is essential in determining the outcome of treatment. This study was conducted to elucidate whether recurrence patterns differ according to the extent of resection (EOR) and whether this difference affects prognosis.

METHODS

This single-center study included 358 eligible patients with histologically confirmed isocitrate dehydrogenase (IDH)–wild-type GBM from November 1, 2005, to December 31, 2018. Patients were assigned to one of three separate groups according to EOR: supratotal resection (SupTR), gross-total resection (GTR), and subtotal resection (STR) groups. The patterns of recurrence were classified as local, marginal, and distant based on the range of radiation. The relationship between EOR and recurrence pattern was statistically analyzed.

RESULTS

Observed tumor recurrence rates for each group were as follows: SupTR group, 63.4%; GTR group, 75.3%; and STR group, 80.5% (p = 0.072). Statistically significant differences in patterns of recurrences among groups were observed with respect to local recurrence (SupTR, 57.7%; GTR, 76.0%; STR, 82.8%; p = 0.036) and distant recurrence (SupTR, 50.0%; GTR, 30.1%; STR, 23.2%; p = 0.028). Marginal recurrence showed no statistical difference between groups. Both overall survival and progression-free survival were significantly increased in the SupTR group compared with the STR and GTR groups (p < 0.0001).

CONCLUSIONS

In this study, the authors investigated the association between EOR and patterns of recurrence in patients with IDH–wild-type GBM. The findings not only show that recurrence patterns differ according to EOR but also provide clinical evidence supporting the hypothesized mechanism by which distant recurrence occurs.

ABBREVIATIONS

CCRT = concurrent chemoradiotherapy; CE = contrast enhanced; CTV = clinical target volume; EOR = extent of resection; GBM = glioblastoma; GTR = gross-total resection; GTV = gross target volume; IDH = isocitrate dehydrogenase; iMRI = intraoperative MRI; KPS = Karnofsky Performance Status; LMS = leptomeningeal seeding; MGMT = O6-DNA-methylguanine methyltransferase; NCE = non-CE; OS = overall survival; PFS = progression-free survival; RANO = Response Assessment in Neuro-Oncology; RT = radiotherapy; STR = subtotal resection; SupTR = supratotal resection; SVZ = subventricular zone; TMZ = temozolomide; 5-ALA = 5-aminolevulinic acid.

Supplementary Materials

    • Supplemental Figures and Tables (PDF 790 KB)

Images from Minchev et al. (pp 479–488).

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459466.

    • Search Google Scholar
    • Export Citation
  • 2

    Roh TH, Park HH, Kang SG, Moon JH, Kim EH, Hong CK, et al. Long-term outcomes of concomitant chemoradiotherapy with temozolomide for newly diagnosed glioblastoma patients: a single-center analysis. Medicine (Baltimore). 2017;96(27):e7422.

    • Search Google Scholar
    • Export Citation
  • 3

    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987996.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Kim YZ, Kim CY, Lim J, Sung KS, Lee J, Oh HJ, et al. The Korean Society for Neuro-Oncology (KSNO) Guideline for Glioblastomas: Version 2018.01. Brain Tumor Res Treat. 2019;7(1):19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol. 2014;32(8):774782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection?. J Neurosurg. 2016;124(4):977988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol. 2016;130(2):269282.

  • 9

    Roh TH, Kang SG, Moon JH, Sung KS, Park HH, Kim SH, et al. Survival benefit of lobectomy over gross-total resection without lobectomy in cases of glioblastoma in the noneloquent area: a retrospective study. J Neurosurg. 2019;132(3):895901.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020;6(4):495503.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Pessina F, Navarria P, Cozzi L, Ascolese AM, Simonelli M, Santoro A, et al. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol. 2017;135(1):129139.

    • Search Google Scholar
    • Export Citation
  • 12

    Duffau H. Is supratotal resection of glioblastoma in noneloquent areas possible?. World Neurosurg. 2014;82(1-2):e101e103.

  • 13

    Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien). 2016;158(1):5158.

    • Search Google Scholar
    • Export Citation
  • 14

    Choi SH, Kim JW, Chang JS, Cho JH, Kim SH, Chang JH, Suh CO. Impact of including peritumoral edema in radiotherapy target volume on patterns of failure in glioblastoma following temozolomide-based chemoradiotherapy. Sci Rep. 2017;7:42148.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Brandes AA, Tosoni A, Franceschi E, Sotti G, Frezza G, Amistà P, et al. Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation with MGMT promoter methylation status. J Clin Oncol. 2009;27(8):12751279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Niyazi M, Schnell O, Suchorska B, Schwarz SB, Ganswindt U, Geisler J, et al. FET-PET assessed recurrence pattern after radio-chemotherapy in newly diagnosed patients with glioblastoma is influenced by MGMT methylation status. Radiother Oncol. 2012;104(1):7882.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Rapp M, Baernreuther J, Turowski B, Steiger HJ, Sabel M, Kamp MA. Recurrence pattern analysis of primary glioblastoma. World Neurosurg. 2017;103:733740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Qiu T, Chanchotisatien A, Qin Z, Wu J, Du Z, Zhang X, et al. Imaging characteristics of adult H3 K27M-mutant gliomas. J Neurosurg. 2020;133(6):16621670.

    • Search Google Scholar
    • Export Citation
  • 19

    Schulte JD, Buerki RA, Lapointe S, Molinaro AM, Zhang Y, Villanueva-Meyere JE, et al. Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neurooncol Adv. 2020;2(1):vdaa142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Schreck KC, Ranjan S, Skorupan N, Bettegowda C, Eberhart CG, Ames HM, Holdhoff M. Incidence and clinicopathologic features of H3 K27M mutations in adults with radiographically-determined midline gliomas. J Neurooncol. 2019;143(1):8793.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Jiang H, Cui Y, Liu X, Ren X, Li M, Lin S. Proliferation-dominant high-grade astrocytoma: survival benefit associated with extensive resection of FLAIR abnormality region. J Neurosurg. 2019;132(4):9981005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Conner AK, Baker CM, Briggs RG, Burks JD, Glenn CA, Smitherman AD, et al. A Technique for resecting occipital pole gliomas using a keyhole lobectomy. World Neurosurg. 2017;106:707714.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol. 2010;28(11):19631972.

    • Search Google Scholar
    • Export Citation
  • 24

    Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552558.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395e403.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59(4):793797.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):13501354.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Kessler T, Sahm F, Sadik A, Stichel D, Hertenstein A, Reifenberger G, et al. Molecular differences in IDH wildtype glioblastoma according to MGMT promoter methylation. Neuro Oncol. 2018;20(3):367379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Radke J, Koch A, Pritsch F, Schumann E, Misch M, Hempt C, et al. Predictive MGMT status in a homogeneous cohort of IDH wildtype glioblastoma patients. Acta Neuropathol Commun. 2019;7(1):89.

    • Search Google Scholar
    • Export Citation
  • 30

    Yang P, Zhang W, Wang Y, Peng X, Chen B, Qiu X, et al. IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget. 2015;6(38):4089640906.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Shonka NA, Aizenberg MR. Extent of resection in glioblastoma. J Oncol Pract. 2017;13(10):641642.

  • 32

    Cunha M, Esmeraldo ACS, Leonardo AWH, Santos M Jr, Rotta Medeiros RT, Botelho RV. Elderly patients with glioblastoma: the impact of the surgical resection extent on survival. Rev Assoc Med Bras (1992).2019;65(12):1433.

    • Search Google Scholar
    • Export Citation
  • 33

    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol. 2010;28(11):19631972.

    • Search Google Scholar
    • Export Citation
  • 34

    Pope WB, Xia Q, Paton VE, Das A, Hambleton J, Kim HJ, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology. 2011;76(5):432437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Bette S, Barz M, Huber T, Straube C, Schmidt-Graf F, Combs SE, et al. Retrospective analysis of radiological recurrence patterns in glioblastoma, their prognostic value and association to postoperative infarct volume. Sci Rep. 2018;8(1):4561.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Roelz R, Reinacher P, Jabbarli R, Kraeutle R, Hippchen B, Egger K, et al. Surgical ventricular entry is a key risk factor for leptomeningeal metastasis of high grade gliomas. Sci Rep. 2015;5:17758.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Young J, Gogos A, Pereira M, Morshed RA, Li J, Barkovich M, et al. Effect of ventricular entry during glioblastoma resection on patient outcomes. Neuro Oncol. 2020;22:209.

    • Search Google Scholar
    • Export Citation
  • 38

    Saito T, Muragaki Y, Maruyama T, Komori T, Nitta M, Tsuzuki S, et al. Influence of wide opening of the lateral ventricle on survival for supratentorial glioblastoma patients with radiotherapy and concomitant temozolomide-based chemotherapy. Neurosurg Rev. 2020;43(6):15831593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Spiteri I, Caravagna G, Cresswell GD, Vatsiou A, Nichol D, Acar A, et al. Evolutionary dynamics of residual disease in human glioblastoma. Ann Oncol. 2019;30(3):456463.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Yoon SJ, Park J, Jang DS, Kim HJ, Lee JH, Jo E, et al. Glioblastoma cellular origin and the firework pattern of cancer genesis from the subventricular zone. J Korean Neurosurg Soc. 2020;63(1):2633.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560(7717):243247.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2750 2750 147
Full Text Views 467 467 44
PDF Downloads 545 545 67
EPUB Downloads 0 0 0