Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation

View More View Less
  • 1 Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California;
  • 2 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China; and
  • 3 Department of Neurological Surgery, University of California, San Francisco, California
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

A high level of vascular endothelial growth factor (VEGF) has been implicated in brain arteriovenous malformation (bAVM) bleeding and rupture. However, direct evidence is missing. In this study the authors used a mouse bAVM model to test the hypothesis that elevation of focal VEGF levels in bAVMs exacerbates the severity of bAVM hemorrhage.

METHODS

Brain AVMs were induced in adult mice in which activin receptor–like kinase 1 (Alk1, a gene that causes AVM) gene exons 4–6 were floxed by intrabasal ganglia injection of an adenoviral vector expressing Cre recombinase to induce Alk1 mutation and an adeno-associated viral vector expressing human VEGF (AAV-VEGF) to induce angiogenesis. Two doses of AAV-VEGF (5 × 109 [high] or 2 × 109 [low]) viral genomes were used. In addition, the common carotid artery and external jugular vein were anastomosed in a group of mice treated with low-dose AAV-VEGF 6 weeks after the model induction to induce cerebral venous hypertension (VH), because VH increases the VEGF level in the brain. Brain samples were collected 8 weeks after the model induction. Hemorrhages in the bAVM lesions were quantified on brain sections stained with Prussian blue, which detects iron deposition. VEGF levels were quantified in bAVM tissue by enzyme-linked immunosorbent assay.

RESULTS

Compared to mice injected with a low dose of AAV-VEGF, the mice injected with a high dose had higher levels of VEGF (p = 0.003) and larger Prussian blue–positive areas in the bAVM lesion at 8 or 9 weeks after model induction (p = 0.002). VH increased bAVM hemorrhage in the low-dose AAV-VEGF group. The overall mortality in the high-dose AAV-VEGF group was 26.7%, whereas no mouse died in the low-dose AAV-VEGF group without VH. In contrast, VH caused a mortality of 50% in the low-dose AAV-VEGF group.

CONCLUSIONS

Using mouse bAVM models, the authors provided direct evidence that elevation of the VEGF level increases bAVM hemorrhage and mouse mortality.

ABBREVIATIONS AAV = adeno-associated viral vector; Ad-Cre = adenoviral vector expressing Cre recombinase; Ad-GFP = adenoviral vector expressing green fluorescent protein; bAVM = brain arteriovenous malformation; CCA = common carotid artery; EJV = external jugular vein; IACUC = Institutional Animal Care and Use Committee; UCSF = University of California, San Francisco; VEGF = vascular endothelial growth factor; VH = venous hypertension; WT = wild type.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Hua Su: University of California, San Francisco, CA. hua.su@ucsf.edu.

INCLUDE WHEN CITING Published online April 26, 2019; DOI: 10.3171/2019.1.JNS183112.

P.C. and L.M. contributed equally to this work.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Al-Shahi Salman R, White PM, Counsell CE, du Plessis J, van Beijnum J, Josephson CB, : Outcome after conservative management or intervention for unruptured brain arteriovenous malformations. JAMA 311:16611669, 2014

    • Search Google Scholar
    • Export Citation
  • 2

    Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, : Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113:1695.e11695.e15, 2006

    • Search Google Scholar
    • Export Citation
  • 3

    Burkhardt JK, Chen X, Winkler EA, Cooke DL, Kim H, Lawton MT: Delayed venous drainage in ruptured arteriovenous malformations based on quantitative color-coded digital subtraction angiography. World Neurosurg 104:619627, 2017

    • Search Google Scholar
    • Export Citation
  • 4

    Chen W, Choi EJ, McDougall CM, Su H: Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 5:316329, 2014

    • Search Google Scholar
    • Export Citation
  • 5

    Chen W, Guo Y, Walker EJ, Shen F, Jun K, Oh SP, : Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol 33:305310, 2013

    • Search Google Scholar
    • Export Citation
  • 6

    Chen W, Sun Z, Han Z, Jun K, Camus M, Wankhede M, : De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation. Stroke 45:900902, 2014

    • Search Google Scholar
    • Export Citation
  • 7

    Choi EJ, Chen W, Jun K, Arthur HM, Young WL, Su H: Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One 9:e88511, 2014

    • Search Google Scholar
    • Export Citation
  • 8

    Choi EJ, Walker EJ, Degos V, Jun K, Kuo R, Pile-Spellman J, : Endoglin deficiency in bone marrow is sufficient to cause cerebrovascular dysplasia in the adult mouse after vascular endothelial growth factor stimulation. Stroke 44:795798, 2013

    • Search Google Scholar
    • Export Citation
  • 9

    Choi EJ, Walker EJ, Shen F, Oh SP, Arthur HM, Young WL, : Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc Dis 33:540547, 2012

    • Search Google Scholar
    • Export Citation
  • 10

    Cockroft KM, Jayaraman MV, Amin-Hanjani S, Derdeyn CP, McDougall CG, Wilson JA: A perfect storm: how a randomized trial of unruptured brain arteriovenous malformations’ (ARUBA’s) trial design challenges notions of external validity. Stroke 43:19791981, 2012

    • Search Google Scholar
    • Export Citation
  • 11

    Derdeyn CP, Zipfel GJ, Albuquerque FC, Cooke DL, Feldmann E, Sheehan JP, : Management of brain arteriovenous malformations: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48:e200e224, 2017

    • Search Google Scholar
    • Export Citation
  • 12

    Fleetwood IG, Steinberg GK: Arteriovenous malformations. Lancet 359:863873, 2002

  • 13

    Gao P, Zhu Y, Ling F, Shen F, Lee B, Gabriel RA, : Nonischemic cerebral venous hypertension promotes a pro-angiogenic stage through HIF-1 downstream genes and leukocyte-derived MMP-9. J Cereb Blood Flow Metab 29:14821490, 2009

    • Search Google Scholar
    • Export Citation
  • 14

    Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, : Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke 43:12401246, 2012

    • Search Google Scholar
    • Export Citation
  • 15

    Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, : Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol 295:H2250H2256, 2008

    • Search Google Scholar
    • Export Citation
  • 16

    Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, : VEGF induces more severe cerebrovascular dysplasia in Endoglin± than in Alk1± mice. Transl Stroke Res 1:197201, 2010

    • Search Google Scholar
    • Export Citation
  • 17

    Hashimoto T, Emala CW, Joshi S, Mesa-Tejada R, Quick CM, Feng L, : Abnormal pattern of Tie-2 and vascular endothelial growth factor receptor expression in human cerebral arteriovenous malformations. Neurosurgery 47:910919, 2000

    • Search Google Scholar
    • Export Citation
  • 18

    Hashimoto T, Wu Y, Lawton MT, Yang GY, Barbaro NM, Young WL: Coexpression of angiogenic factors in brain arteriovenous malformations. Neurosurgery 56:10581065, 2005

    • Search Google Scholar
    • Export Citation
  • 19

    Kashiwazaki D, Kobayashi R, Houkin K, Kuroda S: Increased expression of vascular endothelial growth factor and its receptor in enlarging brain arteriovenous malformations—a case report. Br J Neurosurg 28:119121, 2014

    • Search Google Scholar
    • Export Citation
  • 20

    Kiliç T, Pamir MN, Küllü S, Eren F, Ozek MM, Black PM: Expression of structural proteins and angiogenic factors in cerebrovascular anomalies. Neurosurgery 46:11791192, 2000

    • Search Google Scholar
    • Export Citation
  • 21

    Kim H, Pawlikowska L, Young WL: Genetics and vascular biology of brain vascular malformations (Chapter 12), in Mohr JP, Wolf PA, Grotta JC, (eds): Stroke: Pathophysiology, Diagnosis, and Management, ed 5. Philadelphia: Churchill Livingstone Elsevier, 2011, pp 169186

    • Search Google Scholar
    • Export Citation
  • 22

    Koizumi T, Shiraishi T, Hagihara N, Tabuchi K, Hayashi T, Kawano T: Expression of vascular endothelial growth factors and their receptors in and around intracranial arteriovenous malformations. Neurosurgery 50:117126, 2002

    • Search Google Scholar
    • Export Citation
  • 23

    Ma L, Chen XL, Chen Y, Wu CX, Ma J, Zhao YL: Subsequent haemorrhage in children with untreated brain arteriovenous malformation: Higher risk with unbalanced inflow and outflow angioarchitecture. Eur Radiol 27:28682876, 2017

    • Search Google Scholar
    • Export Citation
  • 24

    Ma L, Shen F, Jun K, Bao C, Kuo R, Young WL, : Integrin β8 deletion enhances vascular dysplasia and hemorrhage in the brain of adult Alk1 heterozygous mice. Transl Stroke Res 7:488496, 2016

    • Search Google Scholar
    • Export Citation
  • 25

    Milton I, Seki T: Transgenic mouse model of hemorrhagic arteriovenous malformation in brain and spinal cord. Stroke 42:e91, 2011 (Abstract #163)

    • Search Google Scholar
    • Export Citation
  • 26

    Mohr JP, Moskowitz AJ, Parides M, Stapf C, Young WL: Hull down on the horizon: A Randomized trial of Unruptured Brain Arteriovenous malformations (ARUBA) trial. Stroke 43:17441745, 2012

    • Search Google Scholar
    • Export Citation
  • 27

    Mohr JP, Moskowitz AJ, Stapf C, Hartmann A, Lord K, Marshall SM, : The ARUBA trial: current status, future hopes. Stroke 41:e537e540, 2010

    • Search Google Scholar
    • Export Citation
  • 28

    Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, : Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383:614621, 2014

    • Search Google Scholar
    • Export Citation
  • 29

    Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, : ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111:633642, 2008

    • Search Google Scholar
    • Export Citation
  • 30

    Shen F, Su H, Liu W, Kan YW, Young WL, Yang GY: Recombinant adeno-associated viral vector encoding human VEGF165 induces neomicrovessel formation in the adult mouse brain. Front Biosci 11:31903198, 2006

    • Search Google Scholar
    • Export Citation
  • 31

    Shen F, Walker EJ, Jiang L, Degos V, Li J, Sun B, : Coexpression of angiopoietin-1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31:23432351, 2011

    • Search Google Scholar
    • Export Citation
  • 32

    Sonstein WJ, Kader A, Michelsen WJ, Llena JF, Hirano A, Casper D: Expression of vascular endothelial growth factor in pediatric and adult cerebral arteriovenous malformations: an immunocytochemical study. J Neurosurg 85:838845, 1996

    • Search Google Scholar
    • Export Citation
  • 33

    Spaide RF, Laud K, Fine HF, Klancnik JM Jr, Meyerle CB, Yannuzzi LA, : Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26:383390, 2006

    • Search Google Scholar
    • Export Citation
  • 34

    Stapf C, Mohr JP, Choi JH, Hartmann A, Mast H: Invasive treatment of unruptured brain arteriovenous malformations is experimental therapy. Curr Opin Neurol 19:6368, 2006

    • Search Google Scholar
    • Export Citation
  • 35

    Su H, Lu R, Kan YW: Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci U S A 97:1380113806, 2000

    • Search Google Scholar
    • Export Citation
  • 36

    Sure U, Butz N, Schlegel J, Siegel AM, Wakat JP, Mennel HD, : Endothelial proliferation, neoangiogenesis, and potential de novo generation of cerebrovascular malformations. J Neurosurg 94:972977, 2001

    • Search Google Scholar
    • Export Citation
  • 37

    van Beijnum J, van der Worp HB, Buis DR, Al-Shahi Salman R, Kappelle LJ, Rinkel GJ, : Treatment of brain arteriovenous malformations: a systematic review and meta-analysis. JAMA 306:20112019, 2011

    • Search Google Scholar
    • Export Citation
  • 38

    Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, : Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol 69:954962, 2011

    • Search Google Scholar
    • Export Citation
  • 39

    Walker EJ, Su H, Shen F, Degos V, Amend G, Jun K, : Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 43:19251930, 2012 (Erratum in Stroke 44: e21, 2013)

    • Search Google Scholar
    • Export Citation
  • 40

    Yang ST, Rodriguez-Hernandez A, Walker EJ, Young WL, Su H, Lawton MT: Adult mouse venous hypertension model: common carotid artery to external jugular vein anastomosis. J Vis Exp 95:e50472, 2015

    • Search Google Scholar
    • Export Citation
  • 41

    Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, : VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829838, 2000

    • Search Google Scholar
    • Export Citation
  • 42

    Zhu W, Shen F, Kang S, : Soluble FLT1 gene therapy through systemic viral delivery reduces the severity of mouse brain arteriovenous malformation. Stroke 47 (Suppl 1):A54, 2016 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 43

    Zhu W, Shen F, Mao L, Zhan L, Kang S, Sun Z, : Soluble FLT1 gene therapy alleviates brain arteriovenous malformation severity. Stroke 48:14201423, 2017

    • Search Google Scholar
    • Export Citation
  • 44

    Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, : Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery 59:687696, 2006

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 88 88 88
Full Text Views 16 16 16
PDF Downloads 45 45 45
EPUB Downloads 0 0 0