Letter to the Editor. Pallidothalamic pathway stimulation in DBS for dystonia

View More View Less
  • Cleveland Clinic, Cleveland, OH
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

If the inline PDF is not rendering correctly, you can download the PDF file here.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Josue Avecillas-Chasin: josueavecillas@hotmail.com.

INCLUDE WHEN CITING Published online August 2, 2019; DOI: 10.3171/2019.3.JNS19715.

Disclosures The author reports no conflict of interest.

  • 1

    Akram H, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, : Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 158:332345, 2017

    • Search Google Scholar
    • Export Citation
  • 2

    Avecillas-Chasin JM, Alonso-Frech F, Nombela C, Villanueva C, Barcia JA: Stimulation of the tractography-defined subthalamic nucleus regions correlates with clinical outcomes. Neurosurgery 85:E294E303, 2019

    • Search Google Scholar
    • Export Citation
  • 3

    Herzog J, Pinsker M, Wasner M, Steigerwald F, Wailke S, Deuschl G, : Stimulation of subthalamic fibre tracts reduces dyskinesias in STN-DBS. Mov Disord 22:679684, 2007

    • Search Google Scholar
    • Export Citation
  • 4

    Kim J, Kim Y, Nakajima R, Shin A, Jeong M, Park AH, : Inhibitory basal ganglia inputs induce excitatory motor signals in the thalamus. Neuron 95:11811196.e8, 2017

    • Search Google Scholar
    • Export Citation
  • 5

    Lin S, Wu Y, Li H, Zhang C, Wang T, Pan Y, : Deep brain stimulation of the globus pallidus internus versus the subthalamic nucleus in isolated dystonia. J Neurosurg [epub ahead of print March 8, 2019. DOI: 10.3171/2018.12.JNS181927]

    • Search Google Scholar
    • Export Citation
  • 6

    Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, : Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:15691580, 2006

    • Search Google Scholar
    • Export Citation
  • 7

    Moon HC, Won SY, Kim EG, Kim HK, Cho CB, Park YS: Effect of optogenetic modulation on entopeduncular input affects thalamic discharge and behavior in an AAV2-α-synuclein-induced hemiparkinson rat model. Neurosci Lett 662:129135, 2018

    • Search Google Scholar
    • Export Citation
  • 8

    Parent M, Parent A: The pallidofugal motor fiber system in primates. Parkinsonism Relat Disord 10:203211, 2004

  • 9

    Reich MM, Horn A, Lange F, Roothans J, Paschen S, Runge J, : Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 142:13861398, 2019

    • Search Google Scholar
    • Export Citation
  • 10

    Rozanski VE, da Silva NM, Ahmadi SA, Mehrkens J, da Silva Cunha J, Houde JC, : The role of the pallidothalamic fibre tracts in deep brain stimulation for dystonia: a diffusion MRI tractography study. Hum Brain Mapp 38:12241232, 2017

    • Search Google Scholar
    • Export Citation
  • 11

    Schneider TM, Deistung A, Biedermann U, Matthies C, Ernestus RI, Volkmann J, : Susceptibility sensitive magnetic resonance imaging displays pallidofugal and striatonigral fiber tracts. Oper Neurosurg (Hagerstown) 12:330338, 2016

    • Search Google Scholar
    • Export Citation
  • 1

    Avecillas-Chasin JM, Alonso-Frech F, Nombela C, Villanueva C, Barcia JA: Stimulation of the tractography-defined subthalamic nucleus regions correlates with clinical outcomes. Neurosurgery 85:E294E303, 2019

    • Search Google Scholar
    • Export Citation
  • 2

    Baldermann JC, Melzer C, Zapf A, Kohl S, Timmermann L, Tittgemeyer M, : Connectivity profile predictive of effective deep brain stimulation in obsessive compulsive disorder. Biol Psychiatry 85:735743, 2019

    • Search Google Scholar
    • Export Citation
  • 3

    Chandran AS, Bynevelt M, Lind CRP: Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg 124:96105, 2016

    • Search Google Scholar
    • Export Citation
  • 4

    Coenen VA, Schlaepfer TE, Goll P, Reinacher PC, Voderholzer U, Tebartz van Elst L, : The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder. CNS Spectr 22:282289, 2017

    • Search Google Scholar
    • Export Citation
  • 5

    Coenen VA, Varkuti B, Parpaley Y, Skodda S, Prokop T, Urbach H, : Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor. Acta Neurochir (Wien) 159:779787, 2017

    • Search Google Scholar
    • Export Citation
  • 6

    Cong F, Wang JW, Wang B, Yang Z, An J, Zuo Z, : Direct localisation of the human pedunculopontine nucleus using MRI: a coordinate and fibre-tracking study. Eur Radiol 28:38823892, 2018

    • Search Google Scholar
    • Export Citation
  • 7

    Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, : Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293316, 2019

    • Search Google Scholar
    • Export Citation
  • 8

    Jezzard P, Balaban RS: Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:6573, 1995

    • Search Google Scholar
    • Export Citation
  • 9

    Liebrand LC, Caan MWA, Schuurman PR, van den Munckhof P, Figee M, Denys D, : Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder. Brain Stimul 12:353360, 2018

    • Search Google Scholar
    • Export Citation
  • 10

    Liu T, Eskreis-Winkler S, Schweitzer AD, Chen W, Kaplitt MG, Tsiouris AJ, : Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 269:216223, 2013

    • Search Google Scholar
    • Export Citation
  • 11

    Nowacki A, Schlaier J, Debove I, Pollo C: Validation of diffusion tensor imaging tractography to visualize the dentatorubrothalamic tract for surgical planning. J Neurosurg 130:99108, 2018

    • Search Google Scholar
    • Export Citation
  • 12

    Pauls KAM, Krauss JK, Kämpfer CE, Kühn AA, Schrader C, Südmeyer M, : Causes of failure of pallidal deep brain stimulation in cases with pre-operative diagnosis of isolated dystonia. Park Relat Disord 43:3848, 2017

    • Search Google Scholar
    • Export Citation
  • 13

    Rasouli J, Ramdhani R, Panov FE, Dimov A, Zhang Y, Cho C, : Utilization of quantitative susceptibility mapping for direct targeting of the subthalamic nucleus during deep brain stimulation surgery. Oper Neurosurg (Hagerstown) 14:412419, 2018

    • Search Google Scholar
    • Export Citation
  • 14

    Reich MM, Horn A, Lange F, Roothans J, Paschen S, Runge J, : Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 142:13861398, 2019

    • Search Google Scholar
    • Export Citation
  • 15

    Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, Rajendra JK, : A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry 23:843849, 2018

    • Search Google Scholar
    • Export Citation
  • 16

    Rozanski VE, da Silva NM, Ahmadi SA, Mehrkens J, da Silva Cunha J, Houde JC, : The role of the pallidothalamic fibre tracts in deep brain stimulation for dystonia: a diffusion MRI tractography study. Hum Brain Mapp 38:12241232, 2017

    • Search Google Scholar
    • Export Citation
  • 17

    See AAQ, King NKK: Improving surgical outcome using diffusion tensor imaging techniques in deep brain stimulation. Front Surg 4:54, 2017

    • Search Google Scholar
    • Export Citation
  • 18

    Zhang Y, Wei H, Cronin MJ, He N, Yan F, Liu C: Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. Neuroimage 171:176189, 2018

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 191 191 10
Full Text Views 19 19 1
PDF Downloads 60 60 1
EPUB Downloads 0 0 0