A novel robot-guided minimally invasive technique for brain tumor biopsies

Restricted access

OBJECTIVE

As decisions regarding tumor diagnosis and subsequent treatment are increasingly based on molecular pathology, the frequency of brain biopsies is increasing. Robotic devices overcome limitations of frame-based and frameless techniques in terms of accuracy and usability. The aim of the present study was to present a novel, minimally invasive, robot-guided biopsy technique and compare the results with those of standard burr hole biopsy.

METHODS

A tubular minimally invasive instrument set was custom-designed for the iSYS-1 robot-guided biopsies. Feasibility, accuracy, duration, and outcome were compared in a consecutive series of 66 cases of robot-guided stereotactic biopsies between the minimally invasive (32 patients) and standard (34 patients) procedures.

RESULTS

Application of the minimally invasive instrument set was feasible in all patients. Compared with the standard burr hole technique, accuracy was significantly higher both at entry (median 1.5 mm [range 0.2–3.2 mm] vs 1.7 mm [range 0.8–5.1 mm], p = 0.008) and at target (median 1.5 mm [range 0.4–3.4 mm] vs 2.0 mm [range 0.8–3.9 mm], p = 0.019). The incision-to-suture time was significantly shorter (median 30 minutes [range 15–50 minutes] vs 37.5 minutes [range 25–105 minutes], p < 0.001). The skin incision was significantly shorter (median 16.3 mm [range 12.7–23.4 mm] vs 28.4 mm [range 20–42.2 mm], p = 0.002). A diagnostic tissue sample was obtained in all cases.

CONCLUSIONS

Application of the novel instrument set was feasible in all patients. According to the authors’ data, the minimally invasive robot-guidance procedure can significantly improve accuracy, reduce operating time, and improve the cosmetic result of stereotactic biopsies.

ABBREVIATIONS RTE = real target error; SEEG = stereo-electroencephalography.
Article Information

Contributor Notes

Correspondence Stefan Wolfsberger: Medical University of Vienna, Austria. stefan.wolfsberger@meduniwien.ac.at.INCLUDE WHEN CITING Published online January 18, 2019; DOI: 10.3171/2018.8.JNS182096.Disclosures Dr. Wolfsberger: clinical or research support for this study from and an education consultant for Medtronic, and consultant for MGS.
Headings
References
  • 1

    Air ELLeach JLWarnick REMcPherson CM: Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J Neurosurg 111:8208242009

    • Search Google Scholar
    • Export Citation
  • 2

    Barnett GHMiller DWWeisenberger J: Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg 91:5695761999

    • Search Google Scholar
    • Export Citation
  • 3

    Bernays RLKollias SSKhan NBrandner SMeier SYonekawa Y: Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg 97:3543622002

    • Search Google Scholar
    • Export Citation
  • 4

    Bjartmarz HRehncrona S: Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85:2352422007

    • Search Google Scholar
    • Export Citation
  • 5

    Brinker TArango GKaminsky JSamii AThorns UVorkapic P: An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir (Wien) 140:8838891998

    • Search Google Scholar
    • Export Citation
  • 6

    Dammers RHaitsma IKSchouten JWKros JMAvezaat CJJVincent AJPE: Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir (Wien) 150:23292008

    • Search Google Scholar
    • Export Citation
  • 7

    Dammers RSchouten JWHaitsma IKVincent AJPEKros JMDirven CMF: Towards improving the safety and diagnostic yield of stereotactic biopsy in a single centre. Acta Neurochir (Wien) 152:191519212010

    • Search Google Scholar
    • Export Citation
  • 8

    Dorfer CMinchev GCzech TStefanits HFeucht MPataraia E: A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg 126:162216282017

    • Search Google Scholar
    • Export Citation
  • 9

    Dorfer CStefanits HPataraia EWolfsberger SFeucht MBaumgartner C: Frameless stereotactic drilling for placement of depth electrodes in refractory epilepsy: operative technique and initial experience. Neurosurgery 10 (Suppl 4):5825912014

    • Search Google Scholar
    • Export Citation
  • 10

    Dorward NLPaleologos TSAlberti OThomas DGT: The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg 16:1101182002

    • Search Google Scholar
    • Export Citation
  • 11

    Field MWitham TFFlickinger JCKondziolka DLunsford LD: Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 94:5455512001

    • Search Google Scholar
    • Export Citation
  • 12

    Golfinos JGFitzpatrick BCSmith LRSpetzler RF: Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83:1972051995

    • Search Google Scholar
    • Export Citation
  • 13

    Gralla JNimsky CBuchfelder MFahlbusch RGanslandt O: Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 64:1661702003

    • Search Google Scholar
    • Export Citation
  • 14

    Grossman RSadetzki SSpiegelmann RRam Z: Haemorrhagic complications and the incidence of asymptomatic bleeding associated with stereotactic brain biopsies. Acta Neurochir (Wien) 147:6276312005

    • Search Google Scholar
    • Export Citation
  • 15

    Grunert PDarabi KEspinosa JFilippi R: Computer-aided navigation in neurosurgery. Neurosurg Rev 26:731012003

  • 16

    Grunert PMüller-Forell WDarabi KReisch RBusert CHopf N: Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3:1661731998

    • Search Google Scholar
    • Export Citation
  • 17

    Kondziolka DFirlik ADLunsford LD: Complications of stereotactic brain surgery. Neurol Clin 16:35541998

  • 18

    Kral FPuschban EJRiechelmann HPedross FFreysinger W: Optical and electromagnetic tracking for navigated surgery of the sinuses and frontal skull base. Rhinology 49:3643682011

    • Search Google Scholar
    • Export Citation
  • 19

    Krieger MDChandrasoma PTZee CSApuzzo ML: Role of stereotactic biopsy in the diagnosis and management of brain tumors. Semin Surg Oncol 14:13251998

    • Search Google Scholar
    • Export Citation
  • 20

    Kulkarni AVGuha ALozano ABernstein M: Incidence of silent hemorrhage and delayed deterioration after stereotactic brain biopsy. J Neurosurg 89:31351998

    • Search Google Scholar
    • Export Citation
  • 21

    Lefranc MCapel CPruvot ASFichten ADesenclos CToussaint P: The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA® stereotactic robot. Stereotact Funct Neurosurg 92:2422502014

    • Search Google Scholar
    • Export Citation
  • 22

    Lefranc MCapel CPruvot-Occean ASFichten ADesenclos CToussaint P: Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg 122:3423522015

    • Search Google Scholar
    • Export Citation
  • 23

    Louis DNPerry AReifenberger Gvon Deimling AFigarella-Branger DCavenee WK: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:8038202016

    • Search Google Scholar
    • Export Citation
  • 24

    Maurer CR JrAboutanos GBDawant BMGadamsetty SMargolin RAMaciunas RJ: Effect of geometrical distortion correction in MR on image registration accuracy. J Comput Assist Tomogr 20:6666791996

    • Search Google Scholar
    • Export Citation
  • 25

    Maurer CR JrMaciunas RJFitzpatrick JM: Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 17:7537611998

    • Search Google Scholar
    • Export Citation
  • 26

    McGirt MJWoodworth GFCoon ALFrazier JMAmundson EGaronzik I: Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases. J Neurosurg 102:8979012005

    • Search Google Scholar
    • Export Citation
  • 27

    Minchev GKronreif GMartínez-Moreno MDorfer CMicko AMert A: A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg 126:9859962017

    • Search Google Scholar
    • Export Citation
  • 28

    Moriarty TMQuinones-Hinojosa ALarson PSAlexander E IIIGleason PLSchwartz RB: Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery 47:113811462000

    • Search Google Scholar
    • Export Citation
  • 29

    Paleologos TSDorward NLWadley JPThomas DG: Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery 49:8308372001

    • Search Google Scholar
    • Export Citation
  • 30

    Pötzi CBecherer AMarosi CKaranikas GSzabo MDudczak R: [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84:3053142007

    • Search Google Scholar
    • Export Citation
  • 31

    Quiñones-Hinojosa AWare MLSanai NMcDermott MW: Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol 76:65702006

    • Search Google Scholar
    • Export Citation
  • 32

    Roessler KUngersboeck KAichholzer MDietrich WCzech THeimberger K: Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases. Minim Invasive Neurosurg 41:53571998

    • Search Google Scholar
    • Export Citation
  • 33

    Smith JSQuiñones-Hinojosa ABarbaro NMMcDermott MW: Frame-based stereotactic biopsy remains an important diagnostic tool with distinct advantages over frameless stereotactic biopsy. J Neurooncol 73:1731792005

    • Search Google Scholar
    • Export Citation
  • 34

    Spivak CJPirouzmand F: Comparison of the reliability of brain lesion localization when using traditional and stereotactic image-guided techniques: a prospective study. J Neurosurg 103:4244272005

    • Search Google Scholar
    • Export Citation
  • 35

    Tavares WMTustumi Fda Costa Leite CGamarra LFAmaro E JrTeixeira MJ: An image correction protocol to reduce distortion for 3-T stereotactic MRI. Neurosurgery 74:121126n126–n127 2014

    • Search Google Scholar
    • Export Citation
  • 36

    Varma TRKEldridge P: Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot 2:1071132006

    • Search Google Scholar
    • Export Citation
  • 37

    Widhalm GMinchev GWoehrer APreusser MKiesel BFurtner J: Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35:3813912012

    • Search Google Scholar
    • Export Citation
  • 38

    Wolfsberger SRössler KRegatschnig RUngersböck K: Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 25:68722002

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 113 113 113
Full Text Views 47 47 47
PDF Downloads 58 58 58
EPUB Downloads 0 0 0
PubMed
Google Scholar