Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method

Clinical article

View More View Less
  • Department of Neurosurgery, Inselspital, Bern University Hospital, Bern, Switzerland
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

The authors developed a new mapping technique to overcome the temporal and spatial limitations of classic subcortical mapping of the corticospinal tract (CST). The feasibility and safety of continuous (0.4–2 Hz) and dynamic (at the site of and synchronized with tissue resection) subcortical motor mapping was evaluated.

Methods

The authors prospectively studied 69 patients who underwent tumor surgery adjacent to the CST (< 1 cm using diffusion tensor imaging and fiber tracking) with simultaneous subcortical monopolar motor mapping (short train, interstimulus interval 4 msec, pulse duration 500 μsec) and a new acoustic motor evoked potential alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was technically realized by integrating the mapping probe at the tip of a new suction device, with the concept that this device will be in contact with the tissue where the resection is performed. Motor function was assessed 1 day after surgery, at discharge, and at 3 months.

Results

All procedures were technically successful. There was a 1:1 correlation of motor thresholds for stimulation sites simultaneously mapped with the new suction mapping device and the classic fingerstick probe (24 patients, 74 stimulation points; r2 = 0.98, p < 0.001). The lowest individual motor thresholds were as follows: > 20 mA, 7 patients; 11–20 mA, 13 patients; 6–10 mA, 8 patients; 4–5 mA, 17 patients; and 1–3 mA, 24 patients. At 3 months, 2 patients (3%) had a persistent postoperative motor deficit, both of which were caused by a vascular injury. No patient had a permanent motor deficit caused by a mechanical injury of the CST.

Conclusions

Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. The acoustic feedback and the ability to stimulate the tissue continuously and exactly at the site of tissue removal improves the accuracy of mapping, especially at low (< 5 mA) stimulation intensities. This new technique may increase the safety of motor eloquent tumor surgery.

Abbreviations used in this paper:

CRET = complete resection of enhancing tumor; CST = corticospinal tract; CUSA = Cavitron ultrasonic surgical aspirator; DCS = direct cortical stimulation; EEG = electroencephalography; EOR = extent of resection; GTR = gross-total resection; MEP = motor evoked potential; MRC = Medical Research Council; MT = motor threshold; TES = transcranial electrical stimulation; TOF = train of five.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
  • 1

    Bello L, , Castellano A, , Fava E, , Casaceli G, , Riva M, & Scotti G, et al.: Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus 28:2 E6, 2010

    • Search Google Scholar
    • Export Citation
  • 2

    Berger MS, & Hadjipanayis CG: Surgery of intrinsic cerebral tumors. Neurosurgery 61:1 Suppl 279305, 2007

  • 3

    Berger MS, , Kincaid J, , Ojemann GA, & Lettich E: Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery 25:786792, 1989

    • Search Google Scholar
    • Export Citation
  • 4

    Berger MS, & Rostomily RC: Low grade gliomas: functional mapping resection strategies, extent of resection, and outcome. J Neurooncol 34:85101, 1997

    • Search Google Scholar
    • Export Citation
  • 5

    Calancie B, , Harris W, , Brindle GF, , Green BA, & Landy HJ: Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg 95:2 Suppl 161168, 2001

    • Search Google Scholar
    • Export Citation
  • 6

    Carrabba G, , Fava E, , Giussani C, , Acerbi F, , Portaluri F, & Songa V, et al.: Cortical and subcortical motor mapping in rolandic and perirolandic glioma surgery: impact on postoperative morbidity and extent of resection. J Neurosurg Sci 51:4551, 2007

    • Search Google Scholar
    • Export Citation
  • 7

    Chang EF, , Clark A, , Smith JS, , Polley MY, , Chang SM, & Barbaro NM, et al.: Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article. J Neurosurg 114:566573, 2011

    • Search Google Scholar
    • Export Citation
  • 8

    De Witt Hamer PC, , Robles SG, , Zwinderman AH, , Duffau H, & Berger MS: Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:25592565, 2012

    • Search Google Scholar
    • Export Citation
  • 9

    Deletis V: Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol 63:201214, 1993

  • 10

    Deletis V, & Camargo AB: Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery 49:14881489, 2001

    • Search Google Scholar
    • Export Citation
  • 11

    Deletis V, , Isgum V, & Amassian VE: Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1 Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol 112:438444, 2001

    • Search Google Scholar
    • Export Citation
  • 12

    Deletis V, , Rodi Z, & Amassian VE: Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2 Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol 112:445452, 2001

    • Search Google Scholar
    • Export Citation
  • 13

    Duffau H: A personal consecutive series of surgically treated 51 cases of insular WHO Grade II glioma: advances and limitations. Clinical article. J Neurosurg 110:696708, 2009. (Erratum in J Neurosurg 114: 1486, 2011)

    • Search Google Scholar
    • Export Citation
  • 14

    Duffau H, , Capelle L, , Denvil D, , Sichez N, , Gatignol P, & Taillandier L, et al.: Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98:764778, 2003

    • Search Google Scholar
    • Export Citation
  • 15

    Duffau H, , Lopes M, , Arthuis F, , Bitar A, , Sichez JP, & Van Effenterre R, et al.: Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845851, 2005

    • Search Google Scholar
    • Export Citation
  • 16

    Ewelt C, , Goeppert M, , Rapp M, , Steiger HJ, , Stummer W, & Sabel M: Glioblastoma multiforme of the elderly: the prognostic effect of resection on survival. J Neurooncol 103:611618, 2011

    • Search Google Scholar
    • Export Citation
  • 17

    Fukaya C, , Sumi K, , Otaka T, , Shijo K, , Nagaoaka T, & Kobayashi K, et al.: Corticospinal descending direct wave elicited by subcortical stimulation. J Clin Neurophysiol 28:297301, 2011

    • Search Google Scholar
    • Export Citation
  • 18

    Fukuda M, , Oishi M, , Takao T, , Hiraishi T, , Kobayashi T, & Aoki H, et al.: [Intraoperative monitoring of motor evoked potentials during glioma removal.]. No Shinkei Geka 41:219227, 2013. (Jpn)

    • Search Google Scholar
    • Export Citation
  • 19

    Gupta T, & Sarin R: Poor-prognosis high-grade gliomas: evolving an evidence-based standard of care. Lancet Oncol 3:557564, 2002

  • 20

    Hern JE, , Landgren S, , Phillips CG, & Porter R: Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon's motor cortex. J Physiol 161:7390, 1962

    • Search Google Scholar
    • Export Citation
  • 21

    Jakola AS, , Myrmel KS, , Kloster R, , Torp SH, , Lindal S, & Unsgård G, et al.: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:18811888, 2012

    • Search Google Scholar
    • Export Citation
  • 22

    Kamada K, , Todo T, , Ota T, , Ino K, , Masutani Y, & Aoki S, et al.: The motor-evoked potential threshold evaluated by tractography and electrical stimulation. Clinical article. J Neurosurg 111:785795, 2009

    • Search Google Scholar
    • Export Citation
  • 23

    Keles GE, , Lundin DA, , Lamborn KR, , Chang EF, , Ojemann G, & Berger MS: Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369375, 2004

    • Search Google Scholar
    • Export Citation
  • 24

    Kombos T, , Suess O, , Kern BC, , Funk T, , Hoell T, & Kopetsch O, et al.: Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir (Wien) 141:12951301, 1999

    • Search Google Scholar
    • Export Citation
  • 25

    Kombos T, , Süss O, & Vajkoczy P: Subcortical mapping and monitoring during insular tumor surgery. Neurosurg Focus 27:4 E5, 2009

  • 26

    Krammer MJ, , Wolf S, , Schul DB, , Gerstner W, & Lumenta CB: Significance of intraoperative motor function monitoring using transcranial electrical motor evoked potentials (MEP) in patients with spinal and cranial lesions near the motor pathways. Br J Neurosurg 23:4855, 2009

    • Search Google Scholar
    • Export Citation
  • 27

    Krieg SM, , Shiban E, , Droese D, , Gempt J, , Buchmann N, & Pape H, et al.: Predictive value and safety of intraoperative neurophysiological monitoring using motor evoked potentials in glioma surgery. Neurosurgery 70:10601071, 2012

    • Search Google Scholar
    • Export Citation
  • 28

    Lacroix M, , Abi-Said D, , Fourney DR, , Gokaslan ZL, , Shi W, & DeMonte F, et al.: A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190198, 2001

    • Search Google Scholar
    • Export Citation
  • 29

    Maesawa S, , Fujii M, , Nakahara N, , Watanabe T, , Wakabayashi T, & Yoshida J: Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg 74:153161, 2010

    • Search Google Scholar
    • Export Citation
  • 30

    McGirt MJ, , Chaichana KL, , Attenello FJ, , Weingart JD, , Than K, & Burger PC, et al.: Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 63:700708, 2008

    • Search Google Scholar
    • Export Citation
  • 31

    McGirt MJ, , Chaichana KL, , Gathinji M, , Attenello FJ, , Than K, & Olivi A, et al.: Independent association of extent of resection with survival in patients with malignant brain astrocytoma. Clinical article. J Neurosurg 110:156162, 2009

    • Search Google Scholar
    • Export Citation
  • 32

    Mikuni N, , Okada T, , Nishida N, , Taki J, , Enatsu R, & Ikeda A, et al.: Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg 106:128133, 2007

    • Search Google Scholar
    • Export Citation
  • 33

    Nathan SS, , Sinha SR, , Gordon B, , Lesser RP, & Thakor NV: Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol 86:183192, 1993

    • Search Google Scholar
    • Export Citation
  • 34

    Neuloh G, , Pechstein U, & Schramm J: Motor tract monitoring during insular glioma surgery. J Neurosurg 106:582592, 2007

  • 35

    Neuloh G, , Simon M, & Schramm J: Stroke prevention during surgery for deep-seated gliomas. Neurophysiol Clin 37:383389, 2007

  • 36

    Nossek E, , Korn A, , Shahar T, , Kanner AA, , Yaffe H, & Marcovici D, et al.: Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg 114:738746, 2011

    • Search Google Scholar
    • Export Citation
  • 37

    Ohue S, , Kohno S, , Inoue A, , Yamashita D, , Harada H, & Kumon Y, et al.: Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70:283294, 2012

    • Search Google Scholar
    • Export Citation
  • 38

    Penfield W, & Boldrey E: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389443, 1937

    • Search Google Scholar
    • Export Citation
  • 39

    Prabhu SS, , Gasco J, , Tummala S, , Weinberg JS, & Rao G: Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg 114:719726, 2011

    • Search Google Scholar
    • Export Citation
  • 40

    Sala F, & Lanteri P: Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47:7988, 2003

    • Search Google Scholar
    • Export Citation
  • 41

    Sanai N, , Polley MY, , McDermott MW, , Parsa AT, & Berger MS: An extent of resection threshold for newly diagnosed glioblastomas. Clinical article. J Neurosurg 115:38, 2011

    • Search Google Scholar
    • Export Citation
  • 42

    Sanai N, , Snyder LA, , Honea NJ, , Coons SW, , Eschbacher JM, & Smith KA, et al.: Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. Clinical article. J Neurosurg 115:740748, 2011

    • Search Google Scholar
    • Export Citation
  • 43

    Schucht P, , Beck J, , Abu-Isa J, , Andereggen L, , Murek M, & Seidel K, et al.: Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71:927936, 2012

    • Search Google Scholar
    • Export Citation
  • 44

    Seidel K, , Beck J, , Stieglitz L, , Schucht P, & Raabe A: Low-threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery 71:1 Suppl Operative 104115, 2012

    • Search Google Scholar
    • Export Citation
  • 45

    Seidel K, , Beck J, , Stieglitz L, , Schucht P, & Raabe A: The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. Clinical article. J Neurosurg 118:287296, 2013

    • Search Google Scholar
    • Export Citation
  • 46

    Senft C, , Bink A, , Franz K, , Vatter H, , Gasser T, & Seifert V: Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:9971003, 2011

    • Search Google Scholar
    • Export Citation
  • 47

    Shaw EG, , Berkey B, , Coons SW, , Bullard D, , Brachman D, & Buckner JC, et al.: Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. Clinical article. J Neurosurg 109:835841, 2008

    • Search Google Scholar
    • Export Citation
  • 48

    Smith JS, , Chang EF, , Lamborn KR, , Chang SM, , Prados MD, & Cha S, et al.: Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:13381345, 2008

    • Search Google Scholar
    • Export Citation
  • 49

    Stummer W, , Pichlmeier U, , Meinel T, , Wiestler OD, , Zanella F, & Reulen HJ: Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392401, 2006

    • Search Google Scholar
    • Export Citation
  • 50

    Stummer W, , Reulen HJ, , Meinel T, , Pichlmeier U, , Schumacher W, & Tonn JC, et al.: Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564576, 2008

    • Search Google Scholar
    • Export Citation
  • 51

    Stummer W, , Tonn JC, , Mehdorn HM, , Nestler U, , Franz K, & Goetz C, et al.: Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J Neurosurg 114:613623, 2011

    • Search Google Scholar
    • Export Citation
  • 52

    Suess O, , Kombos T, , Hoell T, , Baur S, , Pietilae T, & Brock M: A new cortical electrode for neuronavigation-guided intraoperative neurophysiological monitoring: technical note. Acta Neurochir (Wien) 142:329332, 2000. (Erratum in Acta Neurochir (Wien) 142: 612, 2000)

    • Search Google Scholar
    • Export Citation
  • 53

    Szelényi A, , Hattingen E, , Weidauer S, , Seifert V, & Ziemann U: Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery 67:302313, 2010

    • Search Google Scholar
    • Export Citation
  • 54

    Szelényi A, , Langer D, , Beck J, , Raabe A, , Flamm ES, & Seifert V, et al.: Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Neurophysiol Clin 37:391398, 2007

    • Search Google Scholar
    • Export Citation
  • 55

    Szelényi A, , Senft C, , Jardan M, , Forster MT, , Franz K, & Seifert V, et al.: Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 122:14701475, 2011

    • Search Google Scholar
    • Export Citation
  • 56

    Taniguchi M, , Cedzich C, & Schramm J: Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32:219226, 1993

    • Search Google Scholar
    • Export Citation
  • 57

    Vecht CJ, , Avezaat CJ, , van Putten WL, , Eijkenboom WM, & Stefanko SZ: The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry 53:466471, 1990

    • Search Google Scholar
    • Export Citation
  • 58

    Vogelbaum MA, , Jost S, , Aghi MK, , Heimberger AB, , Sampson JH, & Wen PY, et al.: Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 70:234244, 2012

    • Search Google Scholar
    • Export Citation
  • 59

    Zhu FP, , Wu JS, , Song YY, , Yao CJ, , Zhuang DX, & Xu G, et al.: Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71:11701184, 2012

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 924 582 54
Full Text Views 809 77 11
PDF Downloads 619 85 18
EPUB Downloads 0 0 0