Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice

Laboratory investigation

Hai-Ying Shen M.D., Ph.D. 1 , Hai Sun M.D., Ph.D. 2 , Marissa M. Hanthorn B.A. 1 , Zhongwei Zhi B.S. 3 , Jing-Quan Lan M.D. 1 , David J. Poulsen M.Sc., Ph.D. 4 , Ruikang K. Wang M.Sc., Ph.D. 3 , and Detlev Boison Ph.D. 1
View More View Less
  • 1 Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon;
  • 2 Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon;
  • 3 Department of Bioengineering, University of Washington, Seattle, Washington; and
  • 4 Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. The authors hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. They further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex.

Methods

Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain's endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area.

Results

Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared with control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour (mean ± SEM).

Conclusions

The findings of this study suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. The authors conclude that their model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a noninvasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis.

Abbreviations used in this paper:AAV = adeno-associated virus; ADK = adenosine kinase; AP = anteroposterior; CBF = cerebral blood flow; DV = dorsoventral; EEG = electroencephalography; GFAP = glial fibrillary acidic protein; ML = mediolateral; NCE = neocortical epilepsy; OMAG = optical microangiography; SEM = standard error of the mean; TLE = temporal lobe epilepsy.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Detlev Boison, Ph.D., RS Dow Neurobiology Laboratories, Legacy Research Institute, 1225 NE 2nd Ave., Portland, OR 97232. email: dboison@downeurobiology.org.

Drs. Shen and Sun contributed equally to this work.

Please include this information when citing this paper: published online November 22, 2013; DOI: 10.3171/2013.10.JNS13918.

  • 1

    Adair TH: Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 289:R283R296, 2005

    • Search Google Scholar
    • Export Citation
  • 2

    Aronica E, , Sandau US, , Iyer A, & Boison D: Glial adenosine kinase—a neuropathological marker of the epileptic brain. Neurochem Int 63:688695, 2013

    • Search Google Scholar
    • Export Citation
  • 3

    Aronica E, , Zurolo E, , Iyer A, , de Groot M, , Anink J, & Carbonell C, : Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52:16451655, 2011

    • Search Google Scholar
    • Export Citation
  • 4

    Blume WT, , Ganapathy GR, , Munoz D, & Lee DH: Indices of resective surgery effectiveness for intractable nonlesional focal epilepsy. Epilepsia 45:4653, 2004

    • Search Google Scholar
    • Export Citation
  • 5

    Boison D: Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 85:131141, 2009

  • 6

    Boison D, Adenosine augmentation therapy. Noebels JL, , Avoli M, & Rogawski MA, : Jasper's Basic Mechanisms of the Epilepsies ed 4 Oxford, Oxford University Press, 2012. 11501160

    • Search Google Scholar
    • Export Citation
  • 7

    Boison D: Adenosine dysfunction in epilepsy. Glia 60:12341243, 2012

  • 8

    Boison D: Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65:906943, 2013

  • 9

    Boison D, , Chen JF, & Fredholm BB: Adenosine signaling and function in glial cells. Cell Death Differ 17:10711082, 2010

  • 10

    Bulakbaşi N, , Bozlar U, , Karademir I, , Kocaoğlu M, & Somuncu I: CT and MRI in the evaluation of craniospinal involvement with polyostotic fibrous dysplasia in McCune-Albright syndrome. Diagn Interv Radiol 14:177181, 2008

    • Search Google Scholar
    • Export Citation
  • 11

    Cannestra AF, , Pouratian N, , Bookheimer SY, , Martin NA, , Beckerand DP, & Toga AW: Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb Cortex 11:773782, 2001

    • Search Google Scholar
    • Export Citation
  • 12

    Coney AM, & Marshall JM: Contribution of adenosine to the depression of sympathetically evoked vasoconstriction induced by systemic hypoxia in the rat. J Physiol 549:613623, 2003

    • Search Google Scholar
    • Export Citation
  • 13

    de Groot M, , Iyer A, , Zurolo E, , Anink J, , Heimans JJ, & Boison D, : Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy. Epilepsia 53:5866, 2012

    • Search Google Scholar
    • Export Citation
  • 14

    DiGeronimo RJ, , Gegg CA, & Zuckerman SL: Adenosine depletion alters postictal hypoxic cerebral vasodilation in the newborn pig. Am J Physiol 274:H1495H1501, 1998

    • Search Google Scholar
    • Export Citation
  • 15

    Diógenes MJ, , Neves-Tomé R, , Fucile S, , Martinello K, , Scianni M, & Theofilas P, : Homeostatic control of synaptic activity by endogenous adenosine is mediated by adenosine kinase. Cereb Cortex [epub ahead of print] 2012

    • Search Google Scholar
    • Export Citation
  • 16

    During MJ, & Spencer DD: Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618624, 1992

  • 17

    Etherington LA, , Patterson GE, , Meechan L, , Boison D, , Irving AJ, & Dale N, : Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56:429437, 2009

    • Search Google Scholar
    • Export Citation
  • 18

    Fedele DE, , Li T, , Lan JQ, , Fredholm BB, & Boison D: Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200:184190, 2006

    • Search Google Scholar
    • Export Citation
  • 19

    Fredholm BB: Rethinking the purinergic neuron-glia connection. Proc Natl Acad Sci U S A 109:59135914, 2012

  • 20

    Gelziniene G, , Endziniene M, , Vaiciene N, , Magistris MR, & Seeck M: Presurgical evaluation of epilepsy patients. Medicina (Kaunas) 44:585592, 2008

    • Search Google Scholar
    • Export Citation
  • 21

    Gómez-Gonzalo M, , Losi G, , Brondi M, , Uva L, , Sato SS, & de Curtis M, : Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses. Front Cell Neurosci 5:8, 2011

    • Search Google Scholar
    • Export Citation
  • 22

    Gouder N, , Scheurer L, , Fritschy JM, & Boison D: Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692701, 2004

    • Search Google Scholar
    • Export Citation
  • 23

    Grinvald A: Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception. Brain Topogr 5:7175, 1992

    • Search Google Scholar
    • Export Citation
  • 24

    Haglund MM, & Hochman DW: Furosemide and mannitol suppression of epileptic activity in the human brain. J Neurophysiol 94:907918, 2005

  • 25

    Haglund MM, & Hochman DW: Optical imaging of epileptiform activity in human neocortex. Epilepsia 45:Suppl 4 4347, 2004

  • 26

    Haglund MM, , Ojemann GA, & Hochman DW: Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature 358:668671, 1992

    • Search Google Scholar
    • Export Citation
  • 27

    Haughton V, & Biswal B: Clinical application of basal regional cerebral blood flow fluctuation measurements by FMRI. Adv Exp Med Biol 454:583590, 1998

    • Search Google Scholar
    • Export Citation
  • 28

    Henry TR: PET: cerebral blood flow and glucose metabolism—presurgical localization. Adv Neurol 83:105120, 2000

  • 29

    Hong KW, , Shin HK, , Kim HH, , Choi JM, , Rhim BY, & Lee WS: Metabolism of cAMP to adenosine: role in vasodilation of rat pial artery in response to hypotension. Am J Physiol 276:H376H382, 1999

    • Search Google Scholar
    • Export Citation
  • 30

    Jia Y, , Li P, , Dziennis S, & Wang RK: Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography. PLoS ONE 6:e26802, 2011

    • Search Google Scholar
    • Export Citation
  • 31

    Jia Y, , Li P, & Wang RK: Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice. J Biomed Opt 16:096019, 2011

    • Search Google Scholar
    • Export Citation
  • 32

    Jia Y, , Qin J, , Zhi Z, & Wang RK: Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice. J Biomed Opt 16:086004, 2011

    • Search Google Scholar
    • Export Citation
  • 33

    Kondo S, , Najm I, , Kunieda T, , Perryman S, , Yacubova K, & Lüders HO: Electroencephalographic characterization of an adult rat model of radiation-induced cortical dysplasia. Epilepsia 42:12211227, 2001

    • Search Google Scholar
    • Export Citation
  • 34

    Kuhl DE, , Engel J Jr, , Phelps ME, & Selin C: Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:348360, 1980

    • Search Google Scholar
    • Export Citation
  • 35

    Lado FA, & Moshé SL: How do seizures stop?. Epilepsia 49:16511664, 2008

  • 36

    Lee SK, , Lee SY, , Kim KK, , Hong KS, , Lee DS, & Chung CK: Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525532, 2005

    • Search Google Scholar
    • Export Citation
  • 37

    Lee Y, , Messing A, , Su M, & Brenner M: GFAP promoter elements required for region-specific and astrocyte-specific expression. Glia 56:481493, 2008

    • Search Google Scholar
    • Export Citation
  • 38

    Li T, , Lan JQ, , Fredholm BB, , Simon RP, & Boison D: Adenosine dysfunction in astrogliosis: cause for seizure generation?. Neuron Glia Biol 3:353366, 2007

    • Search Google Scholar
    • Export Citation
  • 39

    Li T, , Lytle N, , Lan JQ, , Sandau US, & Boison D: Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis?. Glia 60:8395, 2012

    • Search Google Scholar
    • Export Citation
  • 40

    Li T, , Ren G, , Lusardi T, , Wilz A, , Lan JQ, & Iwasato T, : Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 118:571582, 2008

    • Search Google Scholar
    • Export Citation
  • 41

    Li T, , Steinbeck JA, , Lusardi T, , Koch P, , Lan JQ, & Wilz A, : Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130:12761288, 2007

    • Search Google Scholar
    • Export Citation
  • 42

    Martin KA: Microcircuits in visual cortex. Curr Opin Neurobiol 12:418425, 2002

  • 43

    Masino SA, , Li T, , Theofilas P, , Sandau US, , Ruskin DN, & Fredholm BB, : A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J Clin Invest 121:26792683, 2011

    • Search Google Scholar
    • Export Citation
  • 44

    Michel CM, , Murray MM, , Lantz G, , Gonzalez S, , Spinelli L, & Grave de Peralta R: EEG source imaging. Clin Neurophysiol 115:21952222, 2004

  • 45

    Najm IM, , Tilelli CQ, & Oghlakian R: Pathophysiological mechanisms of focal cortical dysplasia: a critical review of human tissue studies and animal models. Epilepsia 48:Suppl 2 2132, 2007

    • Search Google Scholar
    • Export Citation
  • 46

    Neirinckx RD: Evaluation of regional cerebral blood flow with 99mTc-d, 1 HM-PAO and SPECT. Neurosurg Rev 10:181184, 1987

  • 47

    O'Regan ME, & Brown JK: Abnormalities in cardiac and respiratory function observed during seizures in childhood. Dev Med Child Neurol 47:49, 2005

    • Search Google Scholar
    • Export Citation
  • 48

    Oghlakian RO, , Tilelli CQ, , Hiremath GK, , Alexopoulos AV, & Najm IM: Single injection of a low dose of pentylenetetrazole leads to epileptogenesis in an animal model of cortical dysplasia. Epilepsia 50:801810, 2009

    • Search Google Scholar
    • Export Citation
  • 49

    Pelligrino DA, , Vetri F, & Xu HL: Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22:229236, 2011

  • 50

    Phillis JW: Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels. Crit Rev Neurobiol 16:237270, 2004

    • Search Google Scholar
    • Export Citation
  • 51

    Phillis JW, , Lungu CL, , Barbu DE, & O'Regan MH: Adenosine's role in hypercapnia-evoked cerebral vasodilation in the rat. Neurosci Lett 365:69, 2004

    • Search Google Scholar
    • Export Citation
  • 52

    Pignataro G, , Maysami S, , Studer FE, , Wilz A, , Simon RP, & Boison D: Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 28:1723, 2008

    • Search Google Scholar
    • Export Citation
  • 53

    Reif R, , Qin J, , An L, , Zhi Z, , Dziennis S, & Wang R: Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging 2012:509783, 2012

    • Search Google Scholar
    • Export Citation
  • 54

    Schuele SU, & Lüders HO: Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol 7:514524, 2008

  • 55

    Schwartz TH, , Chen LM, , Friedman RM, , Spencer DD, & Roe AW: Intraoperative optical imaging of human face cortical topography: a case study. Neuroreport 15:15271531, 2004

    • Search Google Scholar
    • Export Citation
  • 56

    Sciotti VM, & Van Wylen DG: Increases in interstitial adenosine and cerebral blood flow with inhibition of adenosine kinase and adenosine deaminase. J Cereb Blood Flow Metab 13:201207, 1993

    • Search Google Scholar
    • Export Citation
  • 57

    Shen HY, , Lusardi TA, , Williams-Karnesky RL, , Lan JQ, , Poulsen DJ, & Boison D: Adenosine kinase determines the degree of brain injury after ischemic stroke in mice. J Cereb Blood Flow Metab 31:16481659, 2011

    • Search Google Scholar
    • Export Citation
  • 58

    Siegel AM, , Jobst BC, , Thadani VM, , Rhodes CH, , Lewis PJ, & Roberts DW, : Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 42:883888, 2001

    • Search Google Scholar
    • Export Citation
  • 59

    Studer FE, , Fedele DE, , Marowsky A, , Schwerdel C, , Wernli K, & Vogt K, : Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125137, 2006

    • Search Google Scholar
    • Export Citation
  • 60

    Theofilas P, , Brar S, , Stewart KA, , Shen HY, , Sandau US, & Poulsen DJ, : Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589601, 2011

    • Search Google Scholar
    • Export Citation
  • 61

    Wang RK: Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo. Phys Med Biol 52:N531N537, 2007

    • Search Google Scholar
    • Export Citation
  • 62

    Wang RK, & Hurst S: Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. Opt Express 15:1140211412, 2007

    • Search Google Scholar
    • Export Citation
  • 63

    Wang RK, , Jacques SL, , Ma Z, , Hurst S, , Hanson SR, & Gruber A: Three dimensional optical angiography. Opt Express 15:40834097, 2007

  • 64

    Weinberg MS, & McCown TJ: Current prospects and challenges for epilepsy gene therapy. Exp Neurol 244:2735, 2013

  • 65

    Weinberg MS, , Samulski RJ, & McCown TJ: Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 69:8288, 2013

    • Search Google Scholar
    • Export Citation
  • 66

    Wykes RC, , Heeroma JH, , Mantoan L, , Zheng K, , MacDonald DC, & Deisseroth K, : Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152, 2012

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 240 145 26
Full Text Views 380 12 0
PDF Downloads 216 12 0
EPUB Downloads 0 0 0