Misdirection and guidance of regenerating axons after experimental nerve injury and repair

A review

View More View Less
  • 1 Department of Neurosurgery, Leiden University Medical Center, Leiden;
  • 3 Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam;
  • 4 Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, The Netherlands; and
  • 2 Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin, and vice versa—that is, sensory axons projecting toward muscle. In the repair of motor nerves innervating different distal targets, misdirection may result in reinnervation of the wrong target muscle, which might function antagonistically. In sensory nerve repair, misdirection might give an increased perceptual territory. After median nerve repair, for example, this might lead to a dysfunctional hand.

Different factors may be involved in the misdirection of regenerating axons, and there may be various mechanisms that can later correct for misdirection. In this review the authors discuss these different factors and mechanisms that act along the pathway of the regenerating axon. The authors review recently developed evaluation methods that can be used to investigate the accuracy of regeneration after nerve injury and repair (including the use of transgenic fluorescent mice, retrograde tracing techniques, and motion analysis). In addition, the authors discuss new strategies that can improve in vivo guidance of regenerating axons (including physical guidance with multichannel nerve tubes and biological guidance accomplished using gene therapy).

Abbreviations used in this paper:BDNF = brain-derived neurotrophic factor; DY = diamidino yellow; FB = fast blue; GC = growth cone; GDNF = glial cell line–derived neurotrophic factor; LV = lentiviral vector; NGF = nerve growth factor.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Godard C. W. de Ruiter, M.D., Ph.D., Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 1, Leiden, The Netherlands. email: G.C.W.de_Ruiter@lumc.nl.

Please include this information when citing this paper: published online October 11, 2013; DOI: 10.3171/2013.8.JNS122300.

  • 1

    Abernethy DA, , Rud A, & Thomas PK: Neurotropic influence of the distal stump of transected peripheral nerve on axonal regeneration: absence of topographic specificity in adult nerve. J Anat 180:395400, 1992

    • Search Google Scholar
    • Export Citation
  • 2

    Bain JR, , Mackinnon SE, & Hunter DA: Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83:129138, 1989

    • Search Google Scholar
    • Export Citation
  • 3

    Boyd JG, & Gordon T: Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27:277324, 2003

    • Search Google Scholar
    • Export Citation
  • 4

    Bozkurt A, , Brook GA, , Moellers S, , Lassner F, , Sellhaus B, & Weis J, : In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng 13:29712979, 2007

    • Search Google Scholar
    • Export Citation
  • 5

    Brunelli G: Chemotactic arrangement of axons inside and distal to a venous graft. J Reconstr Microsurg 4:75, 1987. (Letter)

  • 6

    Brushart TM: Motor axons preferentially reinnervate motor pathways. J Neurosci 13:27302738, 1993

  • 7

    Brushart TM, , Mathur V, , Sood R, & Koschorke GM: Joseph H. Boyes Award. Dispersion of regenerating axons across enclosed neural gaps. J Hand Surg Am 20:557564, 1995

    • Search Google Scholar
    • Export Citation
  • 8

    Chiu DT, , Smahel J, , Chen L, & Meyer V: Neurotropism revisited. Neurol Res 26:381387, 2004

  • 9

    Daly W, , Yao L, , Zeugolis D, , Windebank AJ, & Pandit A: A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9:202221, 2012

    • Search Google Scholar
    • Export Citation
  • 10

    de Medinaceli L: Use of sciatic function index and walking track assessment. Microsurgery 11:191192, 1990

  • 11

    de Medinaceli L, , Freed WJ, & Wyatt RJ: An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634643, 1982

    • Search Google Scholar
    • Export Citation
  • 12

    de Ruiter GC, , Malessy MJ, , Alaid AO, , Spinner RJ, , Engelstad JK, & Sorenson EJ, : Misdirection of regenerating motor axons after nerve injury and repair in the rat sciatic nerve model. Exp Neurol 211:339350, 2008

    • Search Google Scholar
    • Export Citation
  • 13

    de Ruiter GC, , Onyeneho IA, , Liang ET, , Moore MJ, , Knight AM, & Malessy MJ, : Methods for in vitro characterization of multichannel nerve tubes. J Biomed Mater Res A 84:643651, 2008

    • Search Google Scholar
    • Export Citation
  • 14

    de Ruiter GC, , Spinner RJ, , Alaid AO, , Koch AJ, , Wang H, & Malessy MJ, : Two-dimensional digital video ankle motion analysis for assessment of function in the rat sciatic nerve model. J Peripher Nerv Syst 12:216222, 2007

    • Search Google Scholar
    • Export Citation
  • 15

    de Ruiter GC, , Spinner RJ, , Malessy MJ, , Moore MJ, , Sorenson EJ, & Currier BL, : Accuracy of motor axon regeneration across autograft, single-lumen, and multichannel poly(lacticco-glycolic acid) nerve tubes. Neurosurgery 63:144155, 2008

    • Search Google Scholar
    • Export Citation
  • 16

    de Ruiter GC, , Spinner RJ, , Yaszemski MJ, , Windebank AJ, & Malessy MJ: Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am 20:91105, vii, 2009

    • Search Google Scholar
    • Export Citation
  • 17

    Dellon AL, & Mackinnon SE: Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery 10:220225, 1989

    • Search Google Scholar
    • Export Citation
  • 18

    Dyck PJ, , Lambert EH, , Wood MB, & Linscheid RL: Assessment of nerve regeneration and adaptation after median nerve reconnection and digital neurovascular flap transfer. Neurology 38:15861591, 1988

    • Search Google Scholar
    • Export Citation
  • 19

    Evans PJ, , Bain JR, , Mackinnon SE, , Makino AP, & Hunter DA: Selective reinnervation: a comparison of recovery following microsuture and conduit nerve repair. Brain Res 559:315321, 1991

    • Search Google Scholar
    • Export Citation
  • 20

    Forssman J: Über den ursachen, welche die wachstumsrichtung der peripheren nervenfasern bei der regeneration bestimmen. Beitr Pathol Anat Allgem Pathol 24:56100, 1898

    • Search Google Scholar
    • Export Citation
  • 21

    Franz CK, , Rutishauser U, & Rafuse VF: Polysialylated neural cell adhesion molecule is necessary for selective targeting of regenerating motor neurons. J Neurosci 25:20812091, 2005

    • Search Google Scholar
    • Export Citation
  • 22

    Fu SY, & Gordon T: Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci 15:38763885, 1995

    • Search Google Scholar
    • Export Citation
  • 23

    Fu SY, & Gordon T: Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci 15:38863895, 1995

    • Search Google Scholar
    • Export Citation
  • 24

    Furey MJ, , Midha R, , Xu Q-G, , Belkas J, & Gordon T: Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate. Neurosurgery 60:723733, 2007

    • Search Google Scholar
    • Export Citation
  • 25

    Giannini C, & Dyck PJ: The fate of Schwann cell basement membranes in permanently transected nerves. J Neuropathol Exp Neurol 49:550563, 1990

    • Search Google Scholar
    • Export Citation
  • 26

    Gorio A, , Carmignoto G, , Finesso M, , Polato P, & Nunzi MG: Muscle reinnervation—II. Sprouting, synapse formation and repression. Neuroscience 8:403416, 1983

    • Search Google Scholar
    • Export Citation
  • 27

    Gramsbergen A, , IJkema-Paassen J, & Meek MF: Sciatic nerve transection in the adult rat: abnormal EMG patterns during locomotion by aberrant innervation of hindleg muscles. Exp Neurol 161:183193, 2000

    • Search Google Scholar
    • Export Citation
  • 28

    Guntinas-Lichius O, , Hundeshagen G, , Paling T, & Angelov DN: Impact of different types of facial nerve reconstruction on the recovery of motor function: an experimental study in adult rats. Neurosurgery 61:12761285, 2007

    • Search Google Scholar
    • Export Citation
  • 29

    Hadlock T, , Sundback C, , Hunter D, , Cheney M, & Vacanti JP: A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6:119127, 2000

    • Search Google Scholar
    • Export Citation
  • 30

    Hizay A, , Ozsoy U, , Demirel BM, , Ozsoy O, , Angelova SK, & Ankerne J, : Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery. Neurosurgery 70:15441556, 2012

    • Search Google Scholar
    • Export Citation
  • 31

    Höke A, , Redett R, , Hameed H, , Jari R, , Zhou C, & Li ZB, : Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:96469655, 2006

    • Search Google Scholar
    • Export Citation
  • 32

    Hoyng SA, , Tannemaat MR, , De Winter F, , Verhaagen J, & Malessy MJ: Nerve surgery and gene therapy: a neurobiological and clinical perspective. J Hand Surg Eur Vol 36:735746, 2011

    • Search Google Scholar
    • Export Citation
  • 33

    Hu X, , Cai J, , Yang J, & Smith GM: Sensory axon targeting is increased by NGF gene therapy within the lesioned adult femoral nerve. Exp Neurol 223:153165, 2010

    • Search Google Scholar
    • Export Citation
  • 34

    Ijkema-Paassen J, , Meek MF, & Gramsbergen A: Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve 25:891897, 2002

    • Search Google Scholar
    • Export Citation
  • 35

    Lichtman JW, & Sanes JR: Watching the neuromuscular junction. J Neurocytol 32:767775, 2003

  • 36

    Lin FM, , Pan YC, , Hom C, , Sabbahi M, & Shenaq S: Ankle stance angle: a functional index for the evaluation of sciatic nerve recovery after complete transection. J Reconstr Microsurg 12:173177, 1996

    • Search Google Scholar
    • Export Citation
  • 37

    Lundborg G: A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 25:391414, 2000

    • Search Google Scholar
    • Export Citation
  • 38

    Lykissas MG, , Batistatou AK, , Charalabopoulos KA, & Beris AE: The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4:143151, 2007

    • Search Google Scholar
    • Export Citation
  • 39

    Mackinnon SE, , Dellon AL, , Lundborg G, , Hudson AR, & Hunter DA: A study of neurotrophism in a primate model. J Hand Surg Am 11:888894, 1986

    • Search Google Scholar
    • Export Citation
  • 40

    Madison RD, , Robinson GA, & Chadaram SR: The specificity of motor neurone regeneration (preferential reinnervation). Acta Physiol (Oxf) 189:201206, 2007

    • Search Google Scholar
    • Export Citation
  • 41

    Magill CK, , Tong A, , Kawamura D, , Hayashi A, , Hunter DA, & Parsadanian A, : Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice. Exp Neurol 207:6474, 2007

    • Search Google Scholar
    • Export Citation
  • 42

    Mahoney MJ, , Chen RR, , Tan J, & Saltzman WM: The influence of microchannels on neurite growth and architecture. Biomaterials 26:771778, 2005

    • Search Google Scholar
    • Export Citation
  • 43

    Martini R, , Schachner M, & Brushart TM: The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axonassociated Schwann cells in reinnervated peripheral nerves. J Neurosci 14:71807191, 1994

    • Search Google Scholar
    • Export Citation
  • 44

    Martini R, , Xin Y, , Schmitz B, & Schachner M: The L2/HNK-1 carbohydrate epitope is involved in the preferential outgrowth of motor neurons on ventral roots and motor nerves. Eur J Neurosci 4:628639, 1992

    • Search Google Scholar
    • Export Citation
  • 45

    Moore AM, , Borschel GH, , Santosa KA, , Flagg ER, , Tong AY, & Kasukurthi R, : A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 204:1927, 2012

    • Search Google Scholar
    • Export Citation
  • 46

    Moore MJ, , Friedman JA, , Lewellyn EB, , Mantila SM, , Krych AJ, & Ameenuddin S, : Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 27:419429, 2006

    • Search Google Scholar
    • Export Citation
  • 47

    Nguyen QT, , Sanes JR, & Lichtman JW: Pre-existing pathways promote precise projection patterns. Nat Neurosci 5:861867, 2002

  • 48

    Pan YA, , Misgeld T, , Lichtman JW, & Sanes JR: Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23:1147911488, 2003

    • Search Google Scholar
    • Export Citation
  • 49

    Paves H, & Saarma M: Neurotrophins as in vitro growth cone guidance molecules for embryonic sensory neurons. Cell Tissue Res 290:285297, 1997

    • Search Google Scholar
    • Export Citation
  • 50

    Politis MJ, , Ederle K, & Spencer PS: Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves. Brain Res 253:112, 1982

    • Search Google Scholar
    • Export Citation
  • 51

    Puigdellívol-Sánchez A, , Prats-Galino A, & Molander C: Estimations of topographically correct regeneration to nerve branches and skin after peripheral nerve injury and repair. Brain Res 1098:4960, 2006

    • Search Google Scholar
    • Export Citation
  • 52

    Puigdellívol-Sánchez A, , Prats-Galino A, , Ruano-Gil D, & Molander C: Fast blue and diamidino yellow as retrograde tracers in peripheral nerves: efficacy of combined nerve injection and capsule application to transected nerves in the adult rat. J Neurosci Methods 95:103110, 2000

    • Search Google Scholar
    • Export Citation
  • 53

    Puigdellívol-Sánchez A, , Prats-Galino A, , Ruano-Gil D, & Molander C: Persistence of tracer in the application site—a potential confounding factor in nerve regeneration studies. J Neurosci Methods 127:105110, 2003

    • Search Google Scholar
    • Export Citation
  • 54

    Puigdellívol-Sánchez A, , Valero-Cabré A, , Prats-Galino A, , Navarro X, & Molander C: On the use of fast blue, fluoro-gold and diamidino yellow for retrograde tracing after peripheral nerve injury: uptake, fading, dye interactions, and toxicity. J Neurosci Methods 115:115127, 2002

    • Search Google Scholar
    • Export Citation
  • 55

    Ramon y Cajal S: Degeneration and Regeneration of the Nervous System London, Oxford University Press, 1928

  • 56

    Ribeiro-Resende VT, , Koenig B, , Nichterwitz S, , Oberhoffner S, & Schlosshauer B: Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials 30:52515259, 2009

    • Search Google Scholar
    • Export Citation
  • 57

    Santos PM, , Williams SL, & Thomas SS: Neuromuscular evaluation using rat gait analysis. J Neurosci Methods 61:7984, 1995

  • 58

    Sinis N, , Manoli T, , Werdon F, , Kraus A, , Schaller HE, & Guntinas-Lichius O, : Chapter 23: Manual stimulation of target muscles has different impact on functional recovery after injury of pure motor or mixed nerves. Int Rev Neurobiol 87:417432, 2009

    • Search Google Scholar
    • Export Citation
  • 59

    Son YJ, & Thompson WJ: Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125132, 1995

  • 60

    Sunderland S: Nerve Injuries and Their Repair: A Critical Appraisal Melbourne, Churchill Livingstone, 1991

  • 61

    Tannemaat MR, , Korecka J, , Ehlert EM, , Mason MR, , van Duinen SG, & Boer GJ, : Human neuroma contains increased levels of semaphorin 3A, which surrounds nerve fibers and reduces neurite extension in vitro. J Neurosci 27:1426014264, 2007

    • Search Google Scholar
    • Export Citation
  • 62

    Udina E, , Cobianchi S, , Allodi I, & Navarro X: Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 193:347353, 2011

    • Search Google Scholar
    • Export Citation
  • 63

    Valero-Cabré A, , Tsironis K, , Skouras E, , Navarro X, & Neiss WF: Peripheral and spinal motor reorganization after nerve injury and repair. J Neurotrauma 21:95108, 2004

    • Search Google Scholar
    • Export Citation
  • 64

    Varejão AS, , Cabrita AM, , Meek MF, , Bulas-Cruz J, , Filipe VM, & Gabriel RC, : Ankle kinematics to evaluate functional recovery in crushed rat sciatic nerve. Muscle Nerve 27:706714, 2003

    • Search Google Scholar
    • Export Citation
  • 65

    Varejão AS, , Cabrita AM, , Meek MF, , Bulas-Cruz J, , Gabriel RC, & Filipe VM, : Motion of the foot and ankle during the stance phase in rats. Muscle Nerve 26:630635, 2002

    • Search Google Scholar
    • Export Citation
  • 66

    Vleggeert-Lankamp CL, , de Ruiter GC, , Wolfs JF, , Pêgo AP, , Feirabend HK, & Lakke EA, : Type grouping in skeletal muscles after experimental reinnervation: another explanation. Eur J Neurosci 21:12491256, 2005

    • Search Google Scholar
    • Export Citation
  • 67

    Weber RA, , Proctor WH, , Warner MR, & Verheyden CN: Autotomy and the sciatic functional index. Microsurgery 14:323327, 1993

  • 68

    Weiss P, & Taylor AC: Further experimental evidence against “neurotropism” in nerve regeneration. J Exp Zool 95:233257, 1944

  • 69

    Witzel C, , Rohde C, & Brushart TM: Pathway sampling by regenerating peripheral axons. J Comp Neurol 485:183190, 2005

  • 70

    Yao L, , Billiar KL, , Windebank AJ, & Pandit A: Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Part C Methods 16:15851596, 2010

    • Search Google Scholar
    • Export Citation
  • 71

    Yu LMY, , Wosnick JH, & Shoichet MS: Miniaturized system of neurotrophin patterning for guided regeneration. J Neurosci Methods 171:253263, 2008

    • Search Google Scholar
    • Export Citation
  • 72

    Yu P, , Matloub HS, , Sanger JR, & Narini P: Gait analysis in rats with peripheral nerve injury. Muscle Nerve 24:231239, 2001

  • 73

    Zhao Q, , Dahlin LB, , Kanje M, & Lundborg G: Specificity of muscle reinnervation following repair of the transected sciatic nerve. A comparative study of different repair techniques in the rat. J Hand Surg Br 17:257261, 1992

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 468 336 78
Full Text Views 519 39 4
PDF Downloads 344 31 1
EPUB Downloads 0 0 0