Molecular oncogenesis of craniopharyngioma: current and future strategies for the development of targeted therapies

A review

Restricted access

Craniopharyngiomas are benign intracranial tumors that arise in the suprasellar and intrasellar region in children and adults. They are associated with calcification on neuroimaging, endocrinopathies, vision problems, and recurrence following subtotal resection. Molecular studies into their genetic basis have been limited, and therefore targeted medical therapies for this tumor have eluded physicians. With the discovery of aberrant Wnt/β-catenin pathway signaling in the pathogenesis of the most common subtype of craniopharyngioma (adamantinomatous), the identification of candidate genes and proteins implicated in this cascade provide attractive targets for future therapies. The recent development of a genetically engineered animal model of this tumor may also serve as a platform for evaluating potential therapies prior to clinical trials in humans. Advances in understanding the molecular pathogenesis of tumor recurrence have also been made, providing clues to develop adjuvant and neoadjuvant therapies to couple with tumor resection for optimal response rates. Finally, advances in genomic technologies and next-generation sequencing will underlie the translation of these genetic and molecular studies from the bench to clinical practice. In this review, the authors present an analysis of the molecular oncogenesis of craniopharyngioma and current directions in the development of novel therapies for these morbid, yet poorly understood brain tumors.

Abbreviations used in this paper:TCF = T cell–specific transcription factor; VEGF = vascular endothelial growth factor.

Article Information

Address correspondence to: James K. Liu, M.D., Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey—New Jersey Medical School, 90 Bergen Street, Suite 8100, Newark, New Jersey 07103. email: james.liu@umdnj.edu.

Please include this information when citing this paper: published online April 5, 2013; DOI: 10.3171/2013.3.JNS122214.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    The Wnt/β-catenin signaling pathway in craniopharyngioma cells. Left: In the absence of Wnt, adenomatous polyposis coli (APC), axin, and glycogen synthase kinase–3β (GSK-3β) form a complex that functions to phosphorylate intracytoplasmic β-catenin. Phosphorylation of β-catenin subsequently leads to its proteasome-mediated degradation. Right: When Wnt binds to a receptor complex composed of Frizzled (Fz) and low-density lipoprotein receptor–related protein (LRP), Dishevelled (DSH) is recruited to this complex, where it binds with axin, preventing the APC/axin/GSK-3β phosphorylation complex from forming. The subsequent accumulation of β-catenin in the cytoplasm leads to an increase in the translocation of β-catenin to the nucleus, where it binds with transcription factors that regulate cell mobility, angiogenesis, and proliferation. A mutated, degradation-resistant form of β-catenin is implicated as the primary driver of oncogenesis in craniopharyngioma cells.

References

  • 1

    Adamson TEWiestler ODKleihues PYaşargil MG: Correlation of clinical and pathological features in surgically treated craniopharyngiomas. J Neurosurg 73:12171990

    • Search Google Scholar
    • Export Citation
  • 2

    Agozzino LFerraraccio FAccardo MEsposito SAgozzino MCuccurullo L: Morphological and ultrastructural findings of prognostic impact in craniopharyngiomas. Ultrastruct Pathol 30:1431502006

    • Search Google Scholar
    • Export Citation
  • 3

    Ahearn TUShaukat AFlanders WDSeabrook MEBostick RM: Markers of the APC/β-catenin signaling pathway as potential treatable, preneoplastic biomarkers of risk for colorectal neoplasms. Cancer Epidemiol Biomarkers Prev 21:9699792012

    • Search Google Scholar
    • Export Citation
  • 4

    Akisik EBuğra DYamaner SDalay N: Analysis of β-catenin alterations in colon tumors: a novel exon 3 mutation. Tumour Biol 32:71762011

    • Search Google Scholar
    • Export Citation
  • 5

    Allen RCZoghbi HYMoseley ABRosenblatt HMBelmont JW: Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51:122912391992

    • Search Google Scholar
    • Export Citation
  • 6

    Aquilina KMerchant TERodriguez-Galindo CEllison DWSanford RABoop FA: Malignant transformation of irradiated craniopharyngioma in children. Report of 2 cases. J Neurosurg Pediatr 5:1551612010

    • Search Google Scholar
    • Export Citation
  • 7

    Balaz PPlaschke JKrüger SGörgens HSchackert HK: TCF-3, 4 protein expression correlates with beta-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers. Int J Colorectal Dis 25:9319392010

    • Search Google Scholar
    • Export Citation
  • 8

    Bartels ULaperriere NBouffet EDrake J: Intracystic therapies for cystic craniopharyngioma in childhood. Front Endocrinol (Lausanne) 3:392012

    • Search Google Scholar
    • Export Citation
  • 9

    Batchelor TTSorensen AGdi Tomaso EZhang WTDuda DGCohen KS: AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83952007

    • Search Google Scholar
    • Export Citation
  • 10

    Bauchet LRigau VMathieu-Daudé HFabbro-Peray PPalenzuela GFigarella-Branger D: Clinical epidemiology for childhood primary central nervous system tumors. J Neurooncol 92:87982009

    • Search Google Scholar
    • Export Citation
  • 11

    Bhattacharjee MBArmstrong DDVogel HCooley LD: Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet 97:39531997

    • Search Google Scholar
    • Export Citation
  • 12

    Boongird ALaothamatas JLarbcharoensub NPhudhichareonrat S: Malignant craniopharyngioma; case report and review of the literature. Neuropathology 29:5915962009

    • Search Google Scholar
    • Export Citation
  • 13

    Brachman DGBeckett MGraves DHaraf DVokes EWeichselbaum RR: p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 53:366736691993

    • Search Google Scholar
    • Export Citation
  • 14

    Bülow BAttewell RHagmar LMalmström PNordström CHErfurth EM: Postoperative prognosis in craniopharyngioma with respect to cardiovascular mortality, survival, and tumor recurrence. J Clin Endocrinol Metab 83:389739041998

    • Search Google Scholar
    • Export Citation
  • 15

    Burghaus SHölsken ABuchfelder MFahlbusch RRiederer BMHans V: A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch 456:2873002010

    • Search Google Scholar
    • Export Citation
  • 16

    Buslei RNolde MHofmann BMeissner SEyupoglu IYSiebzehnrübl F: Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109:5895972005

    • Search Google Scholar
    • Export Citation
  • 17

    Campanini MLColli LMPaixao BMCabral TPAmaral FCMachado HR: CTNNB1 gene mutations, pituitary transcription factors, and MicroRNA expression involvement in the pathogenesis of adamantinomatous craniopharyngiomas. Horm Cancer 1:1871962010

    • Search Google Scholar
    • Export Citation
  • 18

    Camper SA: Beta-catenin stimulates pituitary stem cells to form aggressive tumors. Proc Natl Acad Sci U S A 108:11303113042011

  • 19

    Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:106110682008

    • Search Google Scholar
    • Export Citation
  • 20

    Cani CMMatushita HCarvalho LRSoares ICBrito LPAlmeida MQ: PROP1 and CTNNB1 expression in adamantinomatous craniopharyngiomas with or without β-catenin mutations. Clinics (Sao Paulo) 66:184918542011

    • Search Google Scholar
    • Export Citation
  • 21

    Cao JLin JPYang LXChen KHuang ZS: Expression of aberrant beta-catenin and impaired p63 in craniopharyngiomas. Br J Neurosurg 24:2492562010

    • Search Google Scholar
    • Export Citation
  • 22

    Chesney JMetz CBacher MPeng TMeinhardt ABucala R: An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 5:1811911999

    • Search Google Scholar
    • Export Citation
  • 23

    Crotty TBScheithauer BWYoung WF JrDavis DHShaw EGMiller GM: Papillary craniopharyngioma: a clinicopathological study of 48 cases. J Neurosurg 83:2062141995

    • Search Google Scholar
    • Export Citation
  • 24

    Cushman LJWatkins-Chow DEBrinkmeier MLRaetzman LTRadak ALLloyd RV: Persistent Prop1 expression delays gonadotrope differentiation and enhances pituitary tumor susceptibility. Hum Mol Genet 10:114111532001

    • Search Google Scholar
    • Export Citation
  • 25

    de La Coste ARomagnolo BBilluart PRenard CABuendia MASoubrane O: Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95:884788511998

    • Search Google Scholar
    • Export Citation
  • 26

    Duò DGasverde SBenech FZenga FGiordana MT: MIB-1 immunoreactivity in craniopharyngiomas: a clinico-pathological analysis. Clin Neuropathol 22:2292342003

    • Search Google Scholar
    • Export Citation
  • 27

    Easwaran VLee SHInge LGuo LGoldbeck CGarrett E: beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 63:314531532003

    • Search Google Scholar
    • Export Citation
  • 28

    Ellis MJDing LShen DLuo JSuman VJWallis JW: Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:3533602012

    • Search Google Scholar
    • Export Citation
  • 29

    Fu CGTominaga ONagawa HNita MEMasaki TIshimaru G: Role of p53 and p21/WAF1 detection in patient selection for preoperative radiotherapy in rectal cancer patients. Dis Colon Rectum 41:68741998

    • Search Google Scholar
    • Export Citation
  • 30

    Gao SShi XWang YQian HLiu C: Malignant transformation of craniopharyngioma: case report and review of the literature. J Neurooncol 103:7197252011

    • Search Google Scholar
    • Export Citation
  • 31

    Gaston-Massuet CAndoniadou CLSignore MJayakody SACharolidi NKyeyune R: Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A 108:11482114872011

    • Search Google Scholar
    • Export Citation
  • 32

    Górski GKMcMorrow LEDonaldson MHFreed M: Multiple chromosomal abnormalities in a case of craniopharyngioma. Cancer Genet Cytogenet 60:2122131992

    • Search Google Scholar
    • Export Citation
  • 33

    Griffin CALong PPCarson BSBrem H: Chromosome abnormalities in low-grade central nervous system tumors. Cancer Genet Cytogenet 60:67731992

    • Search Google Scholar
    • Export Citation
  • 34

    Gupta AYang QPandita RKHunt CRXiang TMisri S: Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient cells independent of DNA DSB repair. Cell Cycle 8:219822102009

    • Search Google Scholar
    • Export Citation
  • 35

    He TCSparks ABRago CHermeking HZawel Lda Costa LT: Identification of c-MYC as a target of the APC pathway. Science 281:150915121998

    • Search Google Scholar
    • Export Citation
  • 36

    Hölsken ABuchfelder MFahlbusch RBlümcke IBuslei R: Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol 119:6316392010

    • Search Google Scholar
    • Export Citation
  • 37

    Hölsken AGebhardt MBuchfelder MFahlbusch RBlümcke IBuslei R: EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res 17:436743772011

    • Search Google Scholar
    • Export Citation
  • 38

    Hölsken AKreutzer JHofmann BMHans VOppel FBuchfelder M: Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol 19:3573642009

    • Search Google Scholar
    • Export Citation
  • 39

    Honegger JRenner CFahlbusch RAdams EF: Progesterone receptor gene expression in craniopharyngiomas and evidence for biological activity. Neurosurgery 41:135913641997

    • Search Google Scholar
    • Export Citation
  • 40

    Ishida MHotta MTsukamura ATaga TKato HOhta S: Malignant transformation in craniopharyngioma after radiation therapy: a case report and review of the literature. Clin Neuropathol 29:282010

    • Search Google Scholar
    • Export Citation
  • 41

    Izumoto SSuzuki TKinoshita MHashiba TKagawa NWada K: Immunohistochemical detection of female sex hormone receptors in craniopharyngiomas: correlation with clinical and histologic features. Surg Neurol 63:5205252005

    • Search Google Scholar
    • Export Citation
  • 42

    Jones DTJäger NKool MZichner THutter BSultan M: Dissecting the genomic complexity underlying medulloblastoma. Nature 488:1001052012

    • Search Google Scholar
    • Export Citation
  • 43

    Karavitaki NCudlip SAdams CBWass JA: Craniopharyngiomas. Endocr Rev 27:3713972006

  • 44

    Karavitaki NWarner JTMarland AShine BRyan FArnold J: GH replacement does not increase the risk of recurrence in patients with craniopharyngioma. Clin Endocrinol (Oxf) 64:5565602006

    • Search Google Scholar
    • Export Citation
  • 45

    Karavitaki NWass JA: Craniopharyngiomas. Endocrinol Metab Clin North Am 37:1731932008

  • 46

    Karnes PSTran TNCui MYRaffel CGilles FHBarranger JA: Cytogenetic analysis of 39 pediatric central nervous system tumors. Cancer Genet Cytogenet 59:12191992

    • Search Google Scholar
    • Export Citation
  • 47

    Kato KNakatani YKanno HInayama YIjiri RNagahara N: Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol 203:8148212004

    • Search Google Scholar
    • Export Citation
  • 48

    Kolligs FTBommer GGöke B: Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:1311442002

    • Search Google Scholar
    • Export Citation
  • 49

    Kuratsu JUshio Y: Epidemiological study of primary intracranial tumors: a regional survey in Kumamoto Prefecture in the southern part of Japan. J Neurosurg 84:9469501996

    • Search Google Scholar
    • Export Citation
  • 50

    Lauriola LDoglietto FNovello MSignorelli FMontano NPallini R: De novo malignant craniopharyngioma: case report and literature review. J Neurooncol 103:3813862011

    • Search Google Scholar
    • Export Citation
  • 51

    Lefranc FChevalier CVinchon MDhellemmes PSchüring MPKaltner H: Characterization of the levels of expression of retinoic acid receptors, galectin-3, macrophage migration inhibiting factor, and p53 in 51 adamantinomatous craniopharyngiomas. J Neurosurg 98:1451532003

    • Search Google Scholar
    • Export Citation
  • 52

    Legoix PBluteau OBayer JPerret CBalabaud CBelghiti J: Beta-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene 18:404440461999

    • Search Google Scholar
    • Export Citation
  • 53

    Linabery AMRoss JA: Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer 113:257525962008

    • Search Google Scholar
    • Export Citation
  • 54

    Logan CYNusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:7818102004

  • 55

    Losa MVimercati AAcerno SBarzaghi RLMortini PMangili F: Correlation between clinical characteristics and proliferative activity in patients with craniopharyngioma. J Neurol Neurosurg Psychiatry 75:8898922004

    • Search Google Scholar
    • Export Citation
  • 56

    Luo HYang YHuang FLi FJiang QShi K: Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis. Cancer Lett 315:78852012

    • Search Google Scholar
    • Export Citation
  • 57

    Merchant TEKiehna ENSanford RAMulhern RKThompson SJWilson MW: Craniopharyngioma: the St. Jude Children's Research Hospital experience 1984–2001. Int J Radiat Oncol Biol Phys 53:5335422002

    • Search Google Scholar
    • Export Citation
  • 58

    Miyoshi HDeguchi ANakau MKojima YMori AOshima M: Hepatocellular carcinoma development induced by conditional beta-catenin activation in Lkb1+/− mice. Cancer Sci 100:204620532009

    • Search Google Scholar
    • Export Citation
  • 59

    Momota HIchimiya SIkeda TYamaki TKikuchi THoukin K: Immunohistochemical analysis of the p53 family members in human craniopharyngiomas. Brain Tumor Pathol 20:73772003

    • Search Google Scholar
    • Export Citation
  • 60

    Morabito ADe Maio EDi Maio MNormanno NPerrone F: Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 11:7537642006

    • Search Google Scholar
    • Export Citation
  • 61

    Mortini PLosa MPozzobon GBarzaghi RRiva MAcerno S: Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. Clinical article. J Neurosurg 114:135013592011

    • Search Google Scholar
    • Export Citation
  • 62

    Musani VGorry PBasta-Juzbasic AStipic TMiklic PLevanat S: Mutation in exon 7 of PTCH deregulates SHH/PTCH/SMO signaling: possible linkage to WNT. Int J Mol Med 17:7557592006

    • Search Google Scholar
    • Export Citation
  • 63

    Nguyen MTLue HKleemann RThiele MTolle GFinkelmeier D: The cytokine macrophage migration inhibitory factor reduces pro-oxidative stress-induced apoptosis. J Immunol 170:333733472003

    • Search Google Scholar
    • Export Citation
  • 64

    Nielsen EHFeldt-Rasmussen UPoulsgaard LKristensen LOAstrup JJørgensen JO: Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neurooncol 104:7557632011

    • Search Google Scholar
    • Export Citation
  • 65

    Nishi TKuratsu JTakeshima HSaito YKochi MUshio Y: Prognostic significance of the MIB-1 labeling index for patient with craniopharyngioma. Int J Mol Med 3:1571611999

    • Search Google Scholar
    • Export Citation
  • 66

    Oikonomou EBarreto DCSoares BDe Marco LBuchfelder MAdams EF: Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 73:2052092005

    • Search Google Scholar
    • Export Citation
  • 67

    Pekmezci MLouie JGupta NBloomer MMTihan T: Clinicopathological characteristics of adamantinomatous and papillary craniopharyngiomas: University of California, San Francisco experience 1985–2005. Neurosurgery 67:134113492010

    • Search Google Scholar
    • Export Citation
  • 68

    Pettorini BLFrassanito PCaldarelli MTamburrini GMassimi LDi Rocco C: Molecular pathogenesis of craniopharyngioma: switching from a surgical approach to a biological one. Neurosurg Focus 28:4E12010

    • Search Google Scholar
    • Export Citation
  • 69

    Pinho RSAndreoni SSilva NSCappellano AMMasruha MRCavalheiro S: Pediatric central nervous system tumors: a single-center experience from 1989 to 2009. J Pediatr Hematol Oncol 33:6056092011

    • Search Google Scholar
    • Export Citation
  • 70

    Polakis P: Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:42012

  • 71

    Porfiri ERubinfeld BAlbert IHovanes KWaterman MPolakis P: Induction of a beta-catenin-LEF-1 complex by wnt-1 and transforming mutants of beta-catenin. Oncogene 15:283328391997

    • Search Google Scholar
    • Export Citation
  • 72

    Proescholdt MMerrill MStoerr EMLohmeier ADietmaier WBrawanski A: Expression of carbonic anhydrase IX in craniopharyngiomas. Laboratory investigation. J Neurosurg 115:7968012011

    • Search Google Scholar
    • Export Citation
  • 73

    Rausch TJones DTZapatka MStütz AMZichner TWeischenfeldt J: Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59712012

    • Search Google Scholar
    • Export Citation
  • 74

    Rickert CHPaulus W: Lack of chromosomal imbalances in adamantinomatous and papillary craniopharyngiomas. J Neurol Neurosurg Psychiatry 74:2602612003

    • Search Google Scholar
    • Export Citation
  • 75

    Rienstein SAdams EFPilzer DGoldring AAGoldman BFriedman E: Comparative genomic hybridization analysis of craniopharyngiomas. J Neurosurg 98:1621642003

    • Search Google Scholar
    • Export Citation
  • 76

    Sarubi JCBei HAdams EFBoson WLFriedman EBrandão K: Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsalpha and Gi2alpha genes. Neurosci Lett 310:582001

    • Search Google Scholar
    • Export Citation
  • 77

    Schittenhelm JPsaras TMeyermann RHonegger JBeschorner R: Pituitary adenomas and craniopharyngiomas are CDX2 negative neoplasms. Folia Neuropathol 48:75802010

    • Search Google Scholar
    • Export Citation
  • 78

    Sekine SShibata TKokubu AMorishita YNoguchi MNakanishi Y: Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161:199720012002

    • Search Google Scholar
    • Export Citation
  • 79

    Sengupta SChatterjee UBanerjee UGhosh SChatterjee SGhosh AK: A study of histopathological spectrum and expression of Ki-67, TP53 in primary brain tumors of pediatric age group. Indian J Med Paediatr Oncol 33:25312012

    • Search Google Scholar
    • Export Citation
  • 80

    Stanczak AStec RBodnar LOlszewski WCichowicz MKozlowski W: Prognostic significance of Wnt-1, β-catenin and E-cadherin expression in advanced colorectal carcinoma. Pathol Oncol Res 17:9559632011

    • Search Google Scholar
    • Export Citation
  • 81

    Stripp DCMaity AJanss AJBelasco JBTochner ZAGoldwein JW: Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 58:7147202004

    • Search Google Scholar
    • Export Citation
  • 82

    Sun HIAkgun EBicer AOzkan ABozkurt SUKurtkaya O: Expression of angiogenic factors in craniopharyngiomas: implications for tumor recurrence. Neurosurgery 66:7447502010

    • Search Google Scholar
    • Export Citation
  • 83

    Sung TMiller DCHayes RLAlonso MYee HNewcomb EW: Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10:2492592000

    • Search Google Scholar
    • Export Citation
  • 84

    Sure URüedi DTachibana OYonekawa YOhgaki HKleihues P: Determination of p53 mutations, EGFR overexpression, and loss of p16 expression in pediatric glioblastomas. J Neuropathol Exp Neurol 56:7827891997

    • Search Google Scholar
    • Export Citation
  • 85

    Tamoney HJ Jr: Basal cell nevoid syndrome. Am Surg 35:2792831969

  • 86

    Tena-Suck MLOrtiz-Plata AGalán FSánchez A: Expression of epithelial cell adhesion molecule and pituitary tumor transforming gene in adamantinomatous craniopharyngioma and its correlation with recurrence of the tumor. Ann Diagn Pathol 13:82882009

    • Search Google Scholar
    • Export Citation
  • 87

    Tetsu OMcCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:4224261999

  • 88

    Thapar KStefaneanu LKovacs KScheithauer BWLloyd RVMuller PJ: Estrogen receptor gene expression in craniopharyngiomas: an in situ hybridization study. Neurosurgery 35:101210171994

    • Search Google Scholar
    • Export Citation
  • 89

    Ujifuku KMatsuo TTakeshita THayashi YHayashi KKitagawa N: Malignant transformation of craniopharyngioma associated with moyamoya syndrome. Neurol Med Chir (Tokyo) 50:5996032010

    • Search Google Scholar
    • Export Citation
  • 90

    Vidal SKovacs KLloyd RVMeyer FBScheithauer BW: Angiogenesis in patients with craniopharyngiomas: correlation with treatment and outcome. Cancer 94:7387452002

    • Search Google Scholar
    • Export Citation
  • 91

    Wani YNotohara KFujisawa M: Aberrant expression of an “intestinal marker” Cdx2 in pyloric gland adenoma of the gallbladder. Virchows Arch 453:5215272008

    • Search Google Scholar
    • Export Citation
  • 92

    Wani YNotohara KSaegusa MTsukayama C: Aberrant Cdx2 expression in endometrial lesions with squamous differentiation: important role of Cdx2 in squamous morula formation. Hum Pathol 39:107210792008

    • Search Google Scholar
    • Export Citation
  • 93

    Weiner HLWisoff JHRosenberg MEKupersmith MJCohen HZagzag D: Craniopharyngiomas: a clinicopathological analysis of factors predictive of recurrence and functional outcome. Neurosurgery 35:100110111994

    • Search Google Scholar
    • Export Citation
  • 94

    Xia ZLiu WLi SJia GZhang YLi C: Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adamantinous craniopharyngioma. Neurochem Res 36:234623512011

    • Search Google Scholar
    • Export Citation
  • 95

    Xu JLiu LZheng XYou CLi Q: Expression and inhibition of ADAMDEC1 in craniopharyngioma cells. Neurol Res 34:7017062012

  • 96

    Xu JZhang SYou CWang XZhou Q: Microvascular density and vascular endothelial growth factor have little correlation with prognosis of craniopharyngioma. Surg Neurol 66:Suppl 1S30S342006

    • Search Google Scholar
    • Export Citation
  • 97

    Yoshimoto Mde Toledo SRda Silva NSBayani JBertozzi APStavale JN: Comparative genomic hybridization analysis of pediatric adamantinomatous craniopharyngiomas and a review of the literature. J Neurosurg 101:1 Suppl85902004

    • Search Google Scholar
    • Export Citation
  • 98

    Yu RMelmed S: Pituitary tumor transforming gene: an update. Front Horm Res 32:1751852004

  • 99

    Zellars RCNaida JDDavis MALawrence TS: Effect of p53 overexpression on radiation sensitivity of human colon cancer cells. Radiat Oncol Investig 5:43491997

    • Search Google Scholar
    • Export Citation
  • 100

    Zuhur SSMüslüman AMTanık CKaraman OOztürk FYOzderya A: MGMT immunoexpression in adamantinomatous craniopharyngiomas. Pituitary 14:3233272011

    • Search Google Scholar
    • Export Citation

TrendMD

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 193 193 16
Full Text Views 246 246 3
PDF Downloads 109 109 4
EPUB Downloads 0 0 0

PubMed

Google Scholar