Nerve transfers for the restoration of hand function after spinal cord injury

Case report

Restricted access

Spinal cord injury (SCI) remains a significant public health problem. Despite advances in understanding of the pathophysiological processes of acute and chronic SCI, corresponding advances in translational applications have lagged behind. Nerve transfers using an expendable nearby motor nerve to reinnervate a denervated nerve have resulted in more rapid and improved functional recovery than traditional nerve graft reconstructions following a peripheral nerve injury. The authors present a single case of restoration of some hand function following a complete cervical SCI utilizing nerve transfers.

Abbreviations used in this paper:AIN = anterior interosseous nerve; ASIA = American Spinal Injury Association; ICSHT = International Classification for Surgery of the Hand in Tetraplegia; MRC = Medical Research Council; SCI = spinal cord injury.
Article Information

Contributor Notes

Address correspondence to: Wilson Z. Ray, M.D., Department of Neurological Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110. email: rayz@wudosis.wustl.edu.Please include this information when citing this paper: published online May 15, 2012; DOI: 10.3171/2012.3.JNS12328.
Headings
References
  • 1

    Ackery ATator CKrassioukov A: A global perspective on spinal cord injury epidemiology. J Neurotrauma 21:135513702004

  • 2

    Bagriyanik HAOzogul CAlaygut EGokmen NKucukguclu SGunerli A: Neuroprotective effects of ketorolac tromethamine after spinal cord injury in rats: an ultrastructural study. Adv Ther 25:1521582008

    • Search Google Scholar
    • Export Citation
  • 3

    Bao FLiu D: Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 115:8398492002

    • Search Google Scholar
    • Export Citation
  • 4

    Bertelli JAGhizoni MFTacca CP: Transfer of the teres minor motor branch for triceps reinnervation in tetraplegia. Case report. J Neurosurg 114:145714602011

    • Search Google Scholar
    • Export Citation
  • 5

    Bertelli JATacca CPGhizoni MFKechele PRSantos MA: Transfer of supinator motor branches to the posterior interosseous nerve to reconstruct thumb and finger extension in tetraplegia: case report. J Hand Surg Am 35:164716512010

    • Search Google Scholar
    • Export Citation
  • 6

    Brandt KEMackinnon SE: A technique for maximizing biceps recovery in brachial plexus reconstruction. J Hand Surg Am 18:7267331993

    • Search Google Scholar
    • Export Citation
  • 7

    Brown JMMackinnon SE: Nerve transfers in the forearm and hand. Hand Clin 24:319340v2008

  • 8

    Brown JMShah MNMackinnon SE: Distal nerve transfers: a biology-based rationale. Neurosurg Focus 26:2E122009

  • 9

    Brunelli G: Research on the possibility of overcoming traumatic paraplegia and its first clinical results. Curr Pharm Des 11:142114282005

    • Search Google Scholar
    • Export Citation
  • 10

    Brunelli Gvon Wild K: Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Korean Neurosurg Soc 46:142009

    • Search Google Scholar
    • Export Citation
  • 11

    Carlsen BTKircher MFSpinner RJBishop ATShin AY: Comparison of single versus double nerve transfers for elbow flexion after brachial plexus injury. Plast Reconstr Surg 127:2692762011

    • Search Google Scholar
    • Export Citation
  • 12

    Carlson SLParrish MESpringer JEDoty KDossett L: Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151:77881998

    • Search Google Scholar
    • Export Citation
  • 13

    Carlstedt TAnand PHallin RMisra PVNorén GSeferlis T: Spinal nerve root repair and reimplantation of avulsed ventral roots into the spinal cord after brachial plexus injury. J Neurosurg 93:2 Suppl2372472000

    • Search Google Scholar
    • Export Citation
  • 14

    Dai KRYu CTWu RSZhang XFYuan JXSun YH: Intercostal-lumbar-spinal nerve anastomoses for cord transection. A preliminary investigation. J Reconstr Microsurg 1:2232261985

    • Search Google Scholar
    • Export Citation
  • 15

    Déry MARousseau GBenderdour MBeaumont E: Atorvastatin prevents early apoptosis after thoracic spinal cord contusion injury and promotes locomotion recovery. Neurosci Lett 453:73762009

    • Search Google Scholar
    • Export Citation
  • 16

    Eng LFLee YL: Response of chemokine antagonists to inflammation in injured spinal cord. Neurochem Res 28:951002003

  • 17

    Fleming JCBao FChen YHamilton EFGonzalez-Lara LEFoster PJ: Timing and duration of anti–α4β1 integrin treatment after spinal cord injury: effect on therapeutic efficacy. Laboratory investigation. J Neurosurg Spine 11:5755872009

    • Search Google Scholar
    • Export Citation
  • 18

    Fournier HDMercier PMenei P: Repair of avulsed ventral nerve roots by direct ventral intraspinal implantation after brachial plexus injury. Hand Clin 21:1091182005

    • Search Google Scholar
    • Export Citation
  • 19

    Guízar-Sahagún GRodríguez-Balderas CAFranco-Bourland REMartínez-Cruz AGrijalva IIbarra A: Lack of neuroprotection with pharmacological pretreatment in a paradigm for anticipated spinal cord lesions. Spinal Cord 47:1561602009

    • Search Google Scholar
    • Export Citation
  • 20

    Kale SSGlaus SWYee ANicoson MCHunter DAMackinnon SE: Reverse end-to-side nerve transfer: from animal model to clinical use. J Hand Surg Am 36:163116392011

    • Search Google Scholar
    • Export Citation
  • 21

    Kang CEPoon PCTator CHShoichet MS: A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng Part A 15:5956042009

    • Search Google Scholar
    • Export Citation
  • 22

    Konya DLiao WLChoi HYu DWoodard MCNewton KM: Functional recovery in T13–L1 hemisected rats resulting from peripheral nerve rerouting: role of central neuroplasticity. Regen Med 3:3093272008

    • Search Google Scholar
    • Export Citation
  • 23

    Kumar PAHassan KM: Cross-face nerve graft with freemuscle transfer for reanimation of the paralyzed face: a comparative study of the single-stage and two-stage procedures. Plast Reconstr Surg 109:4514642002

    • Search Google Scholar
    • Export Citation
  • 24

    Lin HHou CChen A: Reconstructed bladder innervation above the level of spinal cord injury to produce urination by abdomen-to-bladder reflex contractions. Case report. J Neurosurg Spine 14:7998022011

    • Search Google Scholar
    • Export Citation
  • 25

    Lin HHou CZhen X: Bypassing spinal cord injury: surgical reconstruction of afferent and efferent pathways to the urinary bladder after conus medullaris injury in a rat model. J Reconstr Microsurg 24:5755812008

    • Search Google Scholar
    • Export Citation
  • 26

    Liu SPeulve PJin OBoisset NTiollier JSaid G: Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots. J Neurosci Res 49:4254321997

    • Search Google Scholar
    • Export Citation
  • 27

    Livshits ACatz AFolman YWitz MLivshits VBaskov A: Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord 42:2112172004

    • Search Google Scholar
    • Export Citation
  • 28

    López-Vales RGarcía-Alías GForés JUdina EGold BGNavarro X: FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat. J Neurosci Res 81:8278362005

    • Search Google Scholar
    • Export Citation
  • 29

    López-Vales RRedensek ASkinner TARathore KIGhasemlou NWojewodka G: Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice. J Neurosci 30:322032262010

    • Search Google Scholar
    • Export Citation
  • 30

    Louie GMackinnon SEDellon ALPatterson GAHunter DA: Medial antebrachial cutaneous—lateral femoral cutaneous neurotization in restoration of sensation to pressure-bearing areas in a paraplegic: a four-year follow-up. Ann Plast Surg 19:5725761987

    • Search Google Scholar
    • Export Citation
  • 31

    Mackinnon SEDellon ALPatterson GAGruss JS: Medial antebrachial cutaneous-lateral femoral cutaneous neurotization to provide sensation to pressure-bearing areas in the paraplegic patient. Ann Plast Surg 14:5415441985

    • Search Google Scholar
    • Export Citation
  • 32

    Mackinnon SENovak CB: Nerve transfers. New options for reconstruction following nerve injury. Hand Clin 15:643666ix1999

  • 33

    Malik HGBuhr AJ: Intercostal nerve transfer to lumbar nerve roots. Part I: development of an animal model and cadaver studies. Spine (Phila Pa 1976) 4:4104151979

    • Search Google Scholar
    • Export Citation
  • 34

    Mann CLee JHLiu JStammers AMSohn HMTetzlaff W: Delayed treatment of spinal cord injury with erythropoietin or darbepoetin—a lack of neuroprotective efficacy in a contusion model of cord injury. Exp Neurol 211:34402008

    • Search Google Scholar
    • Export Citation
  • 35

    Matis GKBirbilis TA: Erythropoietin in spinal cord injury. Eur Spine J 18:3143232009

  • 36

    McDowell CLMoberg EAHouse JH: The Second International Conference on Surgical Rehabilitation of the Upper Limb in Tetraplegia (Quadriplegia). J Hand Surg Am 11:6046081986

    • Search Google Scholar
    • Export Citation
  • 37

    McTigue DMTripathi RWei PLash AT: The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol 205:3964062007

    • Search Google Scholar
    • Export Citation
  • 38

    Mu XAzbill RDSpringer JE: Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 17:7737802000

    • Search Google Scholar
    • Export Citation
  • 39

    National Spinal Cord Injury Statistical Center: Spinal Cord Injury Facts and Figures at a Glance Birmingham, ALNSCISC2010. (https://www.nscisc.uab.edu/PublicDocuments/nscisc_home/pdf/Facts%20and%20Figures%20at%20a%20Glance%202010.pdf) [Accessed March 30 2012]

    • Search Google Scholar
    • Export Citation
  • 40

    Nobunaga AIGo BKKarunas RB: Recent demographic and injury trends in people served by the Model Spinal Cord Injury Care Systems. Arch Phys Med Rehabil 80:137213821999

    • Search Google Scholar
    • Export Citation
  • 41

    Nógrádi ASzabó APintér SVrbová G: Delayed riluzole treatment is able to rescue injured rat spinal motoneurons. Neuroscience 144:4314382007

    • Search Google Scholar
    • Export Citation
  • 42

    Oberlin CAmeur NETeboul FBeaulieu JYVacher C: Restoration of elbow flexion in brachial plexus injury by transfer of ulnar nerve fascicles to the nerve to the biceps muscle. Tech Hand Up Extrem Surg 6:86902002

    • Search Google Scholar
    • Export Citation
  • 43

    Ohta SIwashita YTakada HKuno SNakamura T: Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine (Phila Pa 1976) 30:115411582005

    • Search Google Scholar
    • Export Citation
  • 44

    Oppenheim JSSpitzer DEWinfree CJ: Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article. Neurosurg Focus 26:2E62009

    • Search Google Scholar
    • Export Citation
  • 45

    Pannu RBarbosa ESingh AKSingh I: Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:3403502005

    • Search Google Scholar
    • Export Citation
  • 46

    Pannu RChristie DKBarbosa ESingh ISingh AK: Posttrauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury. J Neurochem 101:1822002007

    • Search Google Scholar
    • Export Citation
  • 47

    Park SWYi JHMiranpuri GSatriotomo IBowen KResnick DK: Thiazolidinedione class of peroxisome proliferatoractivated receptor gamma agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 320:100210122007

    • Search Google Scholar
    • Export Citation
  • 48

    Pinzon AMarcillo APabon DBramlett HMBunge MBDietrich WD: A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Exp Neurol 213:1291362008

    • Search Google Scholar
    • Export Citation
  • 49

    Ray WZMackinnon SE: Clinical outcomes following median to radial nerve transfers. J Hand Surg Am 36:2012082011

  • 50

    Ray WZYarbrough CKYee AMackinnon SE: Clinical outcomes following brachialis to anterior interosseous nerve transfers. J Neurosurg [in press]2012

    • Search Google Scholar
    • Export Citation
  • 51

    Saganová KOrendácová JCízková DVanický I: Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett 433:2462492008

    • Search Google Scholar
    • Export Citation
  • 52

    Sangalang VEBuhr AJMalik HG: Intercostal nerve transfer to lumbar nerve roots. Part II: Neuropathologic findings in the animal model. Spine (Phila Pa 1976) 4:4164221979

    • Search Google Scholar
    • Export Citation
  • 53

    Schwartz GFehlings MG: Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg 94:2 Suppl2452562001

    • Search Google Scholar
    • Export Citation
  • 54

    Sönmez AKabakçi BVardar EGürel DSönmez UOrhan YT: Erythropoietin attenuates neuronal injury and potentiates the expression of pCREB in anterior horn after transient spinal cord ischemia in rats. Surg Neurol 68:2973032007

    • Search Google Scholar
    • Export Citation
  • 55

    Sribnick EASamantaray SDas ASmith JMatzelle DDRay SK: Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 88:173817502010

    • Search Google Scholar
    • Export Citation
  • 56

    Stirling DPKhodarahmi KLiu JMcPhail LTMcBride CBSteeves JD: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:218221902004

    • Search Google Scholar
    • Export Citation
  • 57

    Tadie MLiu SRobert RGuiheneuc PPereon YPerrouin-Verbe B: Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 19:9099162002

    • Search Google Scholar
    • Export Citation
  • 58

    Tian DSLiu JLXie MJZhan YQu WSYu ZY: Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats. J Neurochem 109:165816672009

    • Search Google Scholar
    • Export Citation
  • 59

    Tung THMackinnon SE: Nerve transfers: indications, techniques, and outcomes. J Hand Surg Am 35:3323412010

  • 60

    Tung THNovak CBMackinnon SE: Nerve transfers to the biceps and brachialis branches to improve elbow flexion strength after brachial plexus injuries. J Neurosurg 98:3133182003

    • Search Google Scholar
    • Export Citation
  • 61

    Vialle RLacroix CHarding ILoureiro MCTadié M: Motor and sensitive axonal regrowth after multiple intercosto-lumbar neurotizations in a sheep model. Spinal Cord 48:3673742010

    • Search Google Scholar
    • Export Citation
  • 62

    Vialle RLozeron PLoureiro MCTadié M: Multiple lumbar roots neurotizations with the lower intercostal nerves. Preliminary clinical and electrophysiological results in a sheep model. J Surg Res 149:1992052008

    • Search Google Scholar
    • Export Citation
  • 63

    Wang XSChen YYShang XFZhu ZGChen GQHan Z: Idazoxan attenuates spinal cord injury by enhanced astrocytic activation and reduced microglial activation in rat experimental autoimmune encephalomyelitis. Brain Res 1253:1982092009

    • Search Google Scholar
    • Export Citation
  • 64

    Zeman RJBauman WAWen XOuyang NEtlinger JDCardozo CP: Improved functional recovery with oxandrolone after spinal cord injury in rats. Neuroreport 20:8648682009

    • Search Google Scholar
    • Export Citation
  • 65

    Zhang SJohnston LZhang ZMa YHu YWang J: Restoration of stepping-forward and ambulatory function in patients with paraplegia: rerouting of vascularized intercostal nerves to lumbar nerve roots using selected interfascicular anastomosis. Surg Technol Int 11:2442482003

    • Search Google Scholar
    • Export Citation
TrendMD
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 1092 1017 53
Full Text Views 1116 265 3
PDF Downloads 149 95 2
EPUB Downloads 0 0 0
PubMed
Google Scholar