Preliminary evaluation of a novel intraparenchymal capacitive intracranial pressure monitor

Laboratory investigation

Kristian Aquilina F.R.C.S.(NeuroSurg) 1 , 2 , Marianne Thoresen M.D., Ph.D. 1 , 3 , Ela Chakkarapani M.R.C.P.C.H. 1 , Ian K. Pople F.R.C.S.(NeuroSurg), M.D. 1 , 2 , Hugh B. Coakham F.R.C.S. 1 , 2 and Richard J. Edwards F.R.C.S.(NeuroSurg), M.D. 1 , 2
View More View Less
  • 1 University of Bristol and
  • 2 Department of Neurosurgery, Frenchay Hospital, Bristol, United Kingdom; and
  • 3 Institute of Basic Medical Sciences, University of Oslo, Norway
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Intracranial pressure (ICP) monitors are currently based on fluid-filled, strain gauge, or fiberoptic technology. Capacitive sensors have minimal zero drift and energy requirements, allowing long-term implantation and telemetric interrogation; their application to neurosurgery has only occasionally been reported. The aim of this study was to undertake a preliminary in vitro and in vivo evaluation of a capacitive telemetric implantable ICP monitor.

Methods

Four devices were tested in air- and saline-filled pressure chambers; long-term capacitance-pressure curves were obtained. Devices implanted in a gel phantom and in a piglet were placed in a 3-T MR unit to evaluate MR compatibility. Four devices were implanted in a piglet neonatal hydrocephalus model; output was compared with ICP obtained through fluid-filled transduction and a strain-gauge ICP monitor.

Results

The capacitance-pressure relationship was constant over 4 weeks, suggesting minimal zero drift during this period. There were no temperature changes around the monitor. Signal loss at the sensor was minimal in both the phantom and the piglet. Over 114,000 measurements were obtained; the difference between mean capacitive ICP and fluid-transduced ICP was 1.8 ± 1.42 mm Hg. The correlation between ICP from the capacitive sensor and fluid-filled transducer (r = 0.97, p < 0.0001) or strain-gauge monitor (r = 0.99, p < 0.0001) was excellent. In vivo monitoring was restricted to 48 hours due to problems with robustness in the clinical environment.

Conclusions

This preliminary study demonstrates minimal long-term zero drift in vitro, good MR compatibility, and good correlation with other methods of ICP monitoring in vivo in the short term. Further long-term in vivo study is required.

Abbreviations used in this paper: ICP = intracranial pressure; PCB = printed circuit board; VAD = ventricular access device.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Richard J. Edwards, F.R.C.S.(Neurosurg), M.D., Department of Neurosurgery, Frenchay Hospital, Bristol, BS16 1LE, England. email: richard.edwards@nbt.nhs.uk.

Please include this information when citing this paper: published online May 27, 2011; DOI: 10.3171/2011.4.JNS101920.

  • 1

    Aquilina K, , Hobbs C, , Cherian S, , Tucker A, , Porter H, & Whitelaw A, : A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg 107:2 Suppl 126136, 2007

    • Search Google Scholar
    • Export Citation
  • 2

    Bavetta S, , Norris JS, , Wyatt M, , Sutcliffe JC, & Hamlyn PJ: Prospective study of zero drift in fiberoptic pressure monitors used in clinical practice. J Neurosurg 86:927930, 1997

    • Search Google Scholar
    • Export Citation
  • 3

    Brain Trauma Foundation. American Association of Neurological Surgeons. Joint Section on Neurotrauma and Critical Care: Guidelines for the management of severe head injury. J Neurotrauma 17:449555, 2000

    • Search Google Scholar
    • Export Citation
  • 4

    Brindley GS, , Polkey CE, & Cooper JD: Technique for very long-term monitoring of intracranial pressure. Med Biol Eng Comput 21:460464, 1983

    • Search Google Scholar
    • Export Citation
  • 5

    Chambers IR, , Mendelow AD, , Sinar EJ, & Modha P: A clinical evaluation of the Camino subdural screw and ventricular monitoring kits. Neurosurgery 26:421423, 1990

    • Search Google Scholar
    • Export Citation
  • 6

    Chambers KR, , Kane PJ, , Choksey MS, & Mendelow AD: An evaluation of the camino ventricular bolt system in clinical practice. Neurosurgery 33:866868, 1993

    • Search Google Scholar
    • Export Citation
  • 7

    Choi HS, , Park HD, & Lee KJ: Motion artifact reduction in blood pressure signals using adaptive digital filter with a capacitive sensor. Conf Proc IEEE Eng Med Biol Soc 2007 32853287, 2007

    • Search Google Scholar
    • Export Citation
  • 8

    Citerio G, , Piper I, , Chambers IR, , Galli D, , Enblad P, & Kiening K, : Multicenter clinical assessment of the Raumedic Neurovent-P intracranial pressure sensor: a report by the BrainIT group. Neurosurgery 63:11521158, 2008

    • Search Google Scholar
    • Export Citation
  • 9

    Citerio G, , Piper I, , Cormio M, , Galli D, , Cazzaniga S, & Enblad P, : Bench test assessment of the new Raumedic Neurovent-P ICP sensor: a technical report by the BrainIT group. Acta Neurochir (Wien) 146:12211226, 2004

    • Search Google Scholar
    • Export Citation
  • 10

    Clark SK, & Wise KD: Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors. IEEE Trans Electron Dev 26:18871896, 1979

    • Search Google Scholar
    • Export Citation
  • 11

    Cobb J, & Claremont DJ: Transducers for foot pressure measurement: survey of recent developments. Med Biol Eng Comput 33:525532, 1995

  • 12

    Cosman ER, , Zervas NT, , Chapman PH, , Cosman BJ, & Arnold MA: A telemetric pressure sensor for ventricular shunt systems. Surg Neurol 11:287294, 1979

    • Search Google Scholar
    • Export Citation
  • 13

    Crutchfield JS, , Narayan RK, , Robertson CS, & Michael LH: Evaluation of a fiberoptic intracranial pressure monitor. J Neurosurg 72:482487, 1990

    • Search Google Scholar
    • Export Citation
  • 14

    Czosnyka M, , Czosnyka Z, & Pickard JD: Laboratory testing of three intracranial pressure microtransducers: technical report. Neurosurgery 38:219224, 1996

    • Search Google Scholar
    • Export Citation
  • 15

    Czosnyka M, , Smielewski P, , Timofeev I, , Lavinio A, , Guazzo E, & Hutchinson P, : Intracranial pressure: more than a number. Neurosurg Focus 22:5 E10, 2007

    • Search Google Scholar
    • Export Citation
  • 16

    de Jong DA, , Maas AI, , den Ouden AH, & de Lange SA: Long-term intracranial pressure monitoring. Med Prog Technol 10:8996, 1984

  • 17

    de Jong DA, , Ouden AH, , van de Boon TA, , Yeskoot F, & Maas A: Telemetred epidural pressure. Biotelemetry 2:257264, 1975

  • 18

    Dias JF, , Karrer HE, & Tykulsky A: Capacitive blood pressure transducer. ISA Trans 19:1923, 1980

  • 19

    Fernandes HM, , Bingham K, , Chambers IR, & Mendelow AD: Clinical evaluation of the Codman microsensor intracranial pressure monitoring system. Acta Neurochir Suppl (Wien) 71:4446, 1998

    • Search Google Scholar
    • Export Citation
  • 20

    Frobenius WD, , Sanderson AC, & Nathanson HC: A microminiature solid-state capacitive blood pressure transducer with improved sensitivity. IEEE Trans Biomed Eng 20:312314, 1973

    • Search Google Scholar
    • Export Citation
  • 21

    Fryer TB, , Corbin SD, , Silverberg GD, , Schmidt EV, & Ream AK: Telemetry of intracranial pressure. Biotelem Patient Monit 5:88112, 1978

  • 22

    Gambardella G, , d'Avella D, & Tomasello F: Monitoring of brain tissue pressure with a fiberoptic device. Neurosurgery 31:918922, 1992

  • 23

    Gambardella G, , Zaccone C, , Cardia E, & Tomasello F: Intracranial pressure monitoring in children: comparison of external ventricular device with the fiberoptic system. Childs Nerv Syst 9:470473, 1993

    • Search Google Scholar
    • Export Citation
  • 24

    Gelabert-González M, , Ginesta-Galan V, , Sernamito-García R, , Allut AG, , Bandin-Diéguez J, & Rumbo RM: The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien) 148:435441, 2006

    • Search Google Scholar
    • Export Citation
  • 25

    Ginggen A, , Tardy Y, , Crivelli R, , Bork T, & Renaud P: A telemetric pressure sensor system for biomedical applications. IEEE Trans Biomed Eng 55:13741381, 2008

    • Search Google Scholar
    • Export Citation
  • 26

    Gopinath SP, , Cherian L, , Robertson CS, , Narayan RK, & Grossman RG: Evaluation of a microsensor intracranial pressure transducer. J Neurosci Methods 49:1115, 1993

    • Search Google Scholar
    • Export Citation
  • 27

    Gopinath SP, , Robertson CS, , Contant CF, , Narayan RK, & Grossman RG: Clinical evaluation of a miniature strain-gauge transducer for monitoring intracranial pressure. Neurosurgery 36:11371141, 1995

    • Search Google Scholar
    • Export Citation
  • 28

    Heywood E, , Jeutter D, & Harris G: Tri-axial plantar pressure sensor: design, calibration and characterization. Conf Proc IEEE Eng Med Biol Soc 3:20102013, 2004

    • Search Google Scholar
    • Export Citation
  • 29

    Hollingsworth-Fridlund P, , Vos H, & Daily EK: Use of fiber-optic pressure transducer for intracranial pressure measurements: a preliminary report. Heart Lung 17:111120, 1988

    • Search Google Scholar
    • Export Citation
  • 30

    Hulme A, & Cooper R: A technique for the investigation of intracranial pressure in man. J Neurol Neurosurg Psychiatry 29:154156, 1966

  • 31

    Koskinen LO, & Olivecrona M: Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery 56:693698, 2005

    • Search Google Scholar
    • Export Citation
  • 32

    Kroin JS, , McCarthy RJ, , Stylos L, , Miesel K, , Ivankovich AD, & Penn RD: Long-term testing of an intracranial pressure monitoring device. J Neurosurg 93:852858, 2000

    • Search Google Scholar
    • Export Citation
  • 33

    Lang JM, , Beck J, , Zimmermann M, , Seifert V, & Raabe A: Clinical evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery 52:14551459, 2003

    • Search Google Scholar
    • Export Citation
  • 34

    Mahnken AH, , Urban U, , Fassbender H, , Schnakenberg U, , Schoth F, & Schmitz-Rode T: Telemetric catheter-based pressure sensor for hemodynamic monitoring: experimental experience. Cardiovasc Intervent Radiol 32:714719, 2009

    • Search Google Scholar
    • Export Citation
  • 35

    Marchal C, , Nadi M, , Tosser AJ, , Roussey C, & Gaulard ML: Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz. Int J Hyperthermia 5:725732, 1989

    • Search Google Scholar
    • Export Citation
  • 36

    Marshall LF, , Smith RW, & Shapiro HM: The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg 50:2025, 1979

    • Search Google Scholar
    • Export Citation
  • 37

    Martínez-Mañas RM, , Santamarta D, , de Campos JM, & Ferrer E: Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry 69:8286, 2000

    • Search Google Scholar
    • Export Citation
  • 38

    Miyake H, , Ohta T, , Kajimoto Y, & Matsukawa M: A new ventriculoperitoneal shunt with a telemetric intracranial pressure sensor: clinical experience in 94 patients with hydrocephalus. Neurosurgery 40:931935, 1997

    • Search Google Scholar
    • Export Citation
  • 39

    Münch E, , Weigel R, , Schmiedek P, & Schürer L: The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir (Wien) 140:11131120, 1998

    • Search Google Scholar
    • Export Citation
  • 40

    Newcombe VF, , Hawkes RC, , Harding SG, , Willcox R, , Brock S, & Hutchinson PJ, : Potential heating caused by intraparenchymal intracranial pressure transducers in a 3-tesla magnetic resonance imaging system using a body radiofrequency resonator: assessment of the Codman MicroSensor Transducer. J Neurosurg 109:159164, 2008

    • Search Google Scholar
    • Export Citation
  • 41

    Ostrup RC, , Luerssen TG, , Marshall LF, & Zornow MH: Continuous monitoring of intracranial pressure with a miniaturized fiberoptic device. J Neurosurg 67:206209, 1987

    • Search Google Scholar
    • Export Citation
  • 42

    Piper I, , Barnes A, , Smith D, & Dunn L: The Camino intracranial pressure sensor: is it optimal technology? An internal audit with a review of current intracranial pressure monitoring technologies. Neurosurgery 49:11581165, 2001

    • Search Google Scholar
    • Export Citation
  • 43

    Piper IR, & Miller JD: The evaluation of the wave-form analysis capability of a new strain-gauge intracranial pressure Micro-Sensor. Neurosurgery 36:11421145, 1995

    • Search Google Scholar
    • Export Citation
  • 44

    Poca MA, , Sahuquillo J, , Arribas M, , Báguena M, , Amorós S, & Rubio E: Fiberoptic intraparenchymal brain pressure monitoring with the Camino V420 monitor: reflections on our experience in 163 severely head-injured patients. J Neurotrauma 19:439448, 2002

    • Search Google Scholar
    • Export Citation
  • 45

    Puers R: Capacitive sensors: when and how to use them?. Sensors Actuators A: Phys 37–38:93105, 1993

  • 46

    Rikli DA, , Honigmann P, , Babst R, , Cristalli A, , Morlock MM, & Mittlmeier T: Intra-articular pressure measurement in the radioulnocarpal joint using a novel sensor: in vitro and in vivo results. J Hand Surg Am 32:6775, 2007

    • Search Google Scholar
    • Export Citation
  • 47

    Wuelker N, , Roetman B, & Roessig S: Coracoacromial pressure recordings in a cadaveric model. J Shoulder Elbow Surg 4:462467, 1995

  • 48

    Zervas NT, , Cosman ER, & Cosman BJ: A pressure-balanced radio-telemetry system for the measurement of intracranial pressure. A preliminary design report. J Neurosurg 47:899911, 1977

    • Search Google Scholar
    • Export Citation

Metrics