Theta-gamma dysrhythmia and auditory phantom perception

Case report

Restricted access

Tinnitus is considered an auditory phantom percept analogous to phantom pain. Thalamocortical dysrhythmia has been proposed as a possible pathophysiological mechanism for both tinnitus and pain. Thalamocortical dysrhythmia refers to a persistent pathological resting state theta-gamma coupling that is spatially localized at an area where normally alpha oscillations predominate. Auditory cortex stimulation via implanted electrodes has been developed to treat tinnitus, targeting an area of activation on functional MR imaging elicited by tinnitus-matched sound presentation. The authors describe a case in which clinical improvement was correlated with changes in intracranial recordings. Maximal tinnitus suppression was obtained by current delivery exactly at the blood oxygen level–dependent activation hotspot, which colocalizes with increased gamma and theta activity, in contrast to the other electrode poles, which demonstrated a normal alpha peak. These spectral changes normalized when stimulation induced tinnitus suppression, both on electrode and source-localized electroencephalography recordings. These data suggest that thetagamma coupling as proposed by the thalamocortical dysrhythmia model might be causally related to a conscious auditory phantom percept.

Abbreviations used in this paper: BOLD = blood oxygen level–dependent; dBHL = decibels hearing level; dBSL = decibels sensation level; EEG = electroencephalography; fMR = functional MR; iEEG = intracranial EEG; IPG = internal pulse generator; MEG = magnetoencephalography; sLORETA = standardized low-resolution brain electromagnetic tomography; TMS = transcranial magnetic stimulation; VAS = visual analog scale.
Article Information

Contributor Notes

Address correspondence to: Dirk De Ridder, M.D., Ph.D., Brai2n, Tinnitus Research Initiative Clinic, and Department of Neurosurgery, University Hospital Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium. email: dirk.de.ridder@uza.be.Please include this information when citing this paper: published online January 14, 2011; DOI: 10.3171/2010.11.JNS10335.
Headings
References
  • 1

    Axelsson ARingdahl A: Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23:53621989

  • 2

    Barabasi ALAlbert R: Emergence of scaling in random networks. Science 286:5095121999

  • 3

    Bartels HMiddel BLvan der Laan BFStaal MJAlbers FW: The additive effect of co-occurring anxiety and depression on health status, quality of life and coping strategies in helpseeking tinnitus sufferers. Ear Hear 29:9479562008

    • Search Google Scholar
    • Export Citation
  • 4

    Boly MFaymonville MEPeigneux PLambermont BDamas FLuxen A: Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 15:2832892005

    • Search Google Scholar
    • Export Citation
  • 5

    Boly MFaymonville MEPeigneux PLambermont BDamas PDel Fiore G: Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61:2332382004

    • Search Google Scholar
    • Export Citation
  • 6

    British Society of Audiology: Guidelines on the acoustics of sound field audiometry in clinical audiological applications. 2008. (http://thebsa.org.uk/docs/Guidelines/soundfieldguidelinesfeb2008.pdf) [Accessed December 15 2010]

    • Export Citation
  • 7

    Bullmore ESporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:1861982009

    • Search Google Scholar
    • Export Citation
  • 8

    Buzsáki GChrobak JJ: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5:5045101995

    • Search Google Scholar
    • Export Citation
  • 9

    Crone NEBoatman DGordon BHao L: Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol 112:5655822001

    • Search Google Scholar
    • Export Citation
  • 10

    Crönlein TLangguth BGeisler PHajak G: Tinnitus and insomnia. Prog Brain Res 166:2272332007

  • 11

    Csicsvari JJamieson BWise KDBuzsáki G: Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:3113222003

    • Search Google Scholar
    • Export Citation
  • 12

    De Ridder DDe Mulder GMenovsky TSunaert SKovacs S: Electrical stimulation of auditory and somatosensory cortices for treatment of tinnitus and pain. Prog Brain Res 166:3773882007

    • Search Google Scholar
    • Export Citation
  • 13

    De Ridder DDe Mulder GVerstraeten EVan der Kelen KSunaert SSmits M: Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec 68:48552006

    • Search Google Scholar
    • Export Citation
  • 14

    De Ridder DDe Mulder GWalsh VMuggleton NSunaert SMøller A: Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100:5605642004

    • Search Google Scholar
    • Export Citation
  • 15

    De Ridder Dvan der Loo EVan der Kelen KMenovsky Tvan de Heyning PMoller A: Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially?. Int J Med Sci 4:2422462007

    • Search Google Scholar
    • Export Citation
  • 16

    De Ridder Dvan der Loo EVan der Kelen KMenovsky Tvan de Heyning PMoller A: Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus. Int J Med Sci 4:2372412007

    • Search Google Scholar
    • Export Citation
  • 17

    De Ridder DVanneste Svan der Loo EPlazier MMenovsky Tvan de Heyning P: Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. Clinical article. J Neurosurg 112:128912942010

    • Search Google Scholar
    • Export Citation
  • 18

    De Ridder DVerstraeten EVan der Kelen KDe Mulder GSunaert SVerlooy J: Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:6166192005

    • Search Google Scholar
    • Export Citation
  • 19

    Dehaene SChangeux JPNaccache LSackur JSergent C: Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:2042112006

    • Search Google Scholar
    • Export Citation
  • 20

    Dobie RA: Depression and tinnitus. Otolaryngol Clin North Am 36:3833882003

  • 21

    Dobie RA: A review of randomized clinical trials in tinnitus. Laryngoscope 109:120212111999

  • 22

    Eguíluz VMChialvo DRCecchi GABaliki MApkarian AV: Scale-free brain functional networks. Phys Rev Lett 94:0181022005

  • 23

    Engel AKFries PSinger W: Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:7047162001

  • 24

    Friedland DRGaggl WRunge-Samuelson CUlmer JLKopell BH: Feasibility of auditory cortical stimulation for the treatment of tinnitus. Otol Neurotol 28:100510122007

    • Search Google Scholar
    • Export Citation
  • 25

    Fuchs MKastner JWagner MHawes SEbersole JS: A standardized boundary element method volume conductor model. Clin Neurophysiol 113:7027122002

    • Search Google Scholar
    • Export Citation
  • 26

    Hoffman HJReed GWEpidemiology of tinnitus. Snow JB Jr: Tinnitus: Theory and Management Hamilton, OntarioBC Decker Inc2004. 1641

    • Search Google Scholar
    • Export Citation
  • 27

    Howard MA III: Tinnitus and auditory cortex. J Neurosurg 101:1721722004. (Letter)

  • 28

    Jastreboff PJ: Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:2212541990

  • 29

    Joliot MRibary ULlinás R: Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91:11748117511994

    • Search Google Scholar
    • Export Citation
  • 30

    Jurcak VTsuzuki DDan I: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:160016112007

    • Search Google Scholar
    • Export Citation
  • 31

    Khedr EMRothwell JCAhmed MAEl-Atar A: Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiatry 79:2122152008

    • Search Google Scholar
    • Export Citation
  • 32

    Kleinjung TSteffens TLondero ALangguth B: Transcranial magnetic stimulation (TMS) for treatment of chronic tinnitus: clinical effects. Prog Brain Res 166:3593672007

    • Search Google Scholar
    • Export Citation
  • 33

    Kovacs SPeeters RSmits MDe Ridder DVan Hecke PSunaert S: Activation of cortical and subcortical auditory structures at 3 T by means of a functional magnetic resonance imaging paradigm suitable for clinical use. Invest Radiol 41:87962006

    • Search Google Scholar
    • Export Citation
  • 34

    Laureys SFaymonville MEDegueldre CFiore GDDamas PLambermont B: Auditory processing in the vegetative state. Brain 123:158916012000

    • Search Google Scholar
    • Export Citation
  • 35

    Llinás RRibary UContreras DPedroarena C: The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353:184118491998

    • Search Google Scholar
    • Export Citation
  • 36

    Llinás RRibary UJoliot MWang XJContent and context in temporal thalamocortical binding. Buzsaki GLlinas RSinger W: Temporal Coding in the Brain BerlinSpringer-Verlag1994. 251272

    • Search Google Scholar
    • Export Citation
  • 37

    Llinás RUrbano FJLeznik ERamírez RRvan Marle HJ: Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:3253332005

    • Search Google Scholar
    • Export Citation
  • 38

    Llinás RRRibary UJeanmonod DKronberg EMitra PP: Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222152271999

    • Search Google Scholar
    • Export Citation
  • 39

    Londero ALangguth BDe Ridder DBonfils PLefaucheur JP: Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus?. Neurophysiol Clin 36:1451552006

    • Search Google Scholar
    • Export Citation
  • 40

    Lorenz IMüller NSchlee WHartmann TWeisz N: Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus?. Neurosci Lett 453:2252282009

    • Search Google Scholar
    • Export Citation
  • 41

    Mitra PPPesaran B: Analysis of dynamic brain imaging data. Biophys J 76:6917081999

  • 42

    Moller AR: Similarities between severe tinnitus and chronic pain. J Am Acad Audiol 11:1151242000

  • 43

    Mühlnickel WElbert TTaub EFlor H: Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A 95:10340103431998

  • 44

    Mukamel RGelbard HArieli AHasson UFried IMalach R: Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:9519542005

    • Search Google Scholar
    • Export Citation
  • 45

    Nir YFisch LMukamel RGelbard-Sagiv HArieli AFried I: Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:127512852007

    • Search Google Scholar
    • Export Citation
  • 46

    North RBKidd DHPetrucci LDorsi MJ: Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: part II-clinical outcomes. Neurosurgery 57:9909962005

    • Search Google Scholar
    • Export Citation
  • 47

    Núñez M: Effect of alpha quenching on magnetic field size. Phys Rev E Stat Nonlin Soft Matter Phys 63:0564042001

  • 48

    Pascual-Marqui RD: Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. 2007. (Abstract) (http://arxiv.org/abs/0710.3341) [Accessed December 15 2010]

    • Export Citation
  • 49

    Pascual-Marqui RD: Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. 2007. (Abstract) (http://arxiv.org/abs/0711.1455) [Accessed December 15 2010]

    • Export Citation
  • 50

    Pascual-Marqui RD: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:Suppl D5122002

    • Search Google Scholar
    • Export Citation
  • 51

    Ramirez RRKopell BHButson CRGaggl WFriedland DRBaillet S: Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation. Conf Proc IEEE Eng Med Biol Soc 2009. 194019442009

    • Search Google Scholar
    • Export Citation
  • 52

    Ribary UIoannides AASingh KDHasson RBolton JPLado F: Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A 88:11037110411991

    • Search Google Scholar
    • Export Citation
  • 53

    Schlee WHartmann TLangguth BWeisz N: Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:112009

  • 54

    Schlee WMueller NHartmann TKeil JLorenz IWeisz N: Mapping cortical hubs in tinnitus. BMC Biol 7:802009

  • 55

    Schlee WWeisz NBertrand OHartmann TElbert T: Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 3:e37202008

    • Search Google Scholar
    • Export Citation
  • 56

    Seidman MDRidder DDElisevich KBowyer SMDarrat IDria J: Direct electrical stimulation of Heschl's gyrus for tinnitus treatment. Laryngoscope 118:4915002008

    • Search Google Scholar
    • Export Citation
  • 57

    Smits MKovacs Sde Ridder DPeeters RRvan Hecke PSunaert S: Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49:6696792007

    • Search Google Scholar
    • Export Citation
  • 58

    Steriade M: Grouping of brain rhythms in corticothalamic systems. Neuroscience 137:108711062006

  • 59

    Tiitinen HSinkkonen JReinikainen KAlho KLavikainen JNäätänen R: Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59601993

    • Search Google Scholar
    • Export Citation
  • 60

    Tonndorf J: The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus. Hear Res 28:2712751987

    • Search Google Scholar
    • Export Citation
  • 61

    van der Loo EGais SCongedo MVanneste SPlazier MMenovsky T: Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE 4:e73962009

    • Search Google Scholar
    • Export Citation
  • 62

    Varela FLachaux JPRodriguez EMartinerie J: The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:2292392001

    • Search Google Scholar
    • Export Citation
  • 63

    Weisz NMüller SSchlee WDohrmann KHartmann TElbert T: The neural code of auditory phantom perception. J Neurosci 27:147914842007

    • Search Google Scholar
    • Export Citation
  • 64

    Zöger SSvedlund JHolgers KM: The Hospital Anxiety and Depression Scale (HAD) as a screening instrument in tinnitus evaluation. Int J Audiol 43:4584642004

    • Search Google Scholar
    • Export Citation
TrendMD
Cited By
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 322 286 14
Full Text Views 205 76 2
PDF Downloads 69 33 0
EPUB Downloads 0 0 0
PubMed
Google Scholar