Protection against focal ischemic injury to the brain by trans-sodium crocetinate

Laboratory investigation

Hiroaki Manabe M.D.1, David O. Okonkwo M.D., Ph.D.1,2, John L. Gainer Ph.D.3, Ryon H. Clarke B.A.1,4, and Kevin S. Lee Ph.D.1,2
View More View Less
  • 1 Departments of Neuroscience,
  • | 2 Neurological Surgery, and
  • | 3 Chemical Engineering, and
  • | 4 Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Object

Ischemic injury is a potential complication in a variety of surgical procedures and is a particular impediment to the success of surgeries involving highly vulnerable neural tissue. One approach to limiting this form of injury is to enhance metabolic supply to the affected tissue. Trans-sodium crocetinate (TSC) is a carotenoid compound that has been shown to increase tissue oxygenation by facilitating the diffusivity of small molecules, such as oxygen and glucose. The present study examined the ability of TSC to modify oxygenation in ischemic neural tissue and tested the potential neuroprotective effects of TSC in permanent and temporary models of focal cerebral ischemia.

Methods

Adult male rats (330–370 g) were subjected to either permanent or temporary focal ischemia by simultaneous occlusion of both common carotid arteries and the left middle cerebral artery (3-vessel occlusion [3-VO]). Using the permanent ischemia paradigm, TSC was administered intravenously beginning 10 minutes after the onset of ischemia at 1 of 8 dosages, ranging from 0.023 to 4.580 mg/kg. Cerebral infarct volume was measured 24 hours after the onset of ischemia. The effect of TSC on infarct volume was also tested after temporary (2-hour) ischemia using a dosage of 0.092 mg/kg. In other animals undergoing temporary ischemia, tissue oxygenation was monitored in the ischemic penumbra using a Licox probe.

Results

Administration of TSC reduced infarct volume in a dose-dependent manner in the permanent ischemia model, achieving statistical significance at dosages ranging from 0.046 to 0.229 mg/kg. The most effective dosage of TSC in the permanent ischemia experiment (0.092 mg/kg) was further tested using a temporary (2-hour) ischemia paradigm. Infarct volume was reduced significantly by TSC in this ischemia-reperfusion model as well. Recordings of oxygen levels in the ischemic penumbra of the temporary ischemia model showed that TSC increased tissue oxygenation during vascular occlusion, but reduced the oxygen overshoot (hyperoxygenation) that occurs upon reperfusion.

Conclusions

The novel carotenoid compound TSC exerts a neuroprotective influence against permanent and temporary ischemic injury when administered soon after the onset of ischemia. The protective mechanism of TSC remains to be confirmed; however, the permissive effect of TSC on the diffusivity of small molecules is a plausible mechanism based on the observed increase in tissue oxygenation in the ischemic penumbra. This represents a form of protection based on “metabolic reflow” that can occur under conditions of partial vascular perfusion. It is particularly noteworthy that TSC could conceivably limit the progression of a wide variety of cellular injury mechanisms by blunting the ischemic challenge to the brain.

Abbreviations used in this paper:

BP = blood pressure; CCA = common carotid artery; LSD = least significant difference; MABP = mean arterial BP; MCA = middle cerebral artery; NIGMS = National Institute of General Medical Sciences; NIH = National Institutes of Health; NINDS = National Institute of Neurological Disorders and Stroke; TSC = trans-sodium crocetinate; 3-VO = 3-vessel occlusion.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Address correspondence to: Kevin S. Lee, Ph.D., Department of Neuroscience, Room 5152, 409 Lane Road (MR4 Building), Charlottesville, Virginia 22908. email: ksl3h@virginia.edu.

Please include this information when citing this paper: published online December 4, 2009; DOI: 10.3171/2009.10.JNS09562.

  • 1

    Alternative Therapy Evaluation Committee for the Insurance Corporation of British Columbia: A review of the scientific evidence on the treatment of traumatic brain injuries and strokes with hyperbaric oxygen. Brain Inj 17:225236, 2003

    • Search Google Scholar
    • Export Citation
  • 2

    Al-Waili NS, , Butler GJ, , Beale J, , Abdullah MS, , Hamilton RWB, & Lee BY, et al. : Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease. Adv Ther 22:659678, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Anderson DC, , Bottini AG, , Jagiella WM, , Westphal B, , Ford S, & Rockswold GL, et al. : A pilot study of hyperbaric oxygen in the treatment of human stroke. Stroke 22:11371142, 1991

    • Search Google Scholar
    • Export Citation
  • 4

    Badr AE, , Yin W, , Mychaskiw G, & Zhang JH: Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol Regul Integr Comp Physiol 280:R766R770, 2001

    • Search Google Scholar
    • Export Citation
  • 5

    Bennett MH, , Wasiak J, , Schnabel A, , Kranke P, & French C: Hyperbaric oxygen therapy for acute ischaemic stroke. Cochrane Database Syst Rev 3 CD004954, 2005

    • Search Google Scholar
    • Export Citation
  • 6

    Beynon C, , Sun L, , Marti HH, , Heiland S, & Veltkamp R: Delayed hyperbaric oxygenation is more effective than early prolonged normobaric hyperoxia in experimental focal cerebral ischemia. Neurosci Lett 425:141145, 2007

    • Search Google Scholar
    • Export Citation
  • 7

    Bramlett HM, , Dave KR, , Prado R, , Perez-Pinzon MA, , Torbatti D, & Alonso OF, et al. : Hyperbaric oxygen treatment provides histopathological protection following fluid percussion brain injury and secondary hypoxia. J Cereb Blood Flow Metab 21:1 Suppl S-190, 2001

    • Search Google Scholar
    • Export Citation
  • 8

    Bullock MR: Hyperoxia. J Neurosurg 109:421423, 2008. (Letter)

  • 9

    Burt JT, , Kapp JP, & Smith RR: Hyperbaric oxygen and cerebral infarction in the gerbil. Surg Neurol 28:265268, 1987

  • 10

    Carson S, , McDonagh M, , Russman B, & Helfand M: Hyperbaric oxygen therapy for stroke: a systematic review of the evidence. Clin Rehabil 19:819833, 2005

    • Search Google Scholar
    • Export Citation
  • 11

    Diringer MN: Hyperoxia: good or bad for the injured brain?. Curr Opin Crit Care 14:167171, 2008

  • 12

    Diringer MN, , Aiyagari V, , Zazulia AR, , Videen TO, & Powers WJ: Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg 106:526529, 2007

    • Search Google Scholar
    • Export Citation
  • 13

    Diringer MN, , Powers WJ, , Zazulia AR, & Videen TO: Hyperoxia and traumatic brain injury. J Neurosurg 110:607610, 2009

  • 14

    Eschenfelder CC, , Krug R, , Yusofi AF, , Meyne JK, , Herdegen T, & Koch A, et al. : Neuroprotection by oxygen in acute transient focal cerebral ischemia is dose dependent and shows superiority of hyperbaric oxygenation. Cerebrovasc Dis 25:193201, 2008

    • Search Google Scholar
    • Export Citation
  • 15

    Fehlings MG, & Baker A: Is there a role for hyperoxia in the management of severe traumatic brain injury?. J Neurosurg 106:525, 2007. (Letter)

    • Search Google Scholar
    • Export Citation
  • 16

    Flynn EP, & Auer RN: Eubaric hyperoxemia and experimental cerebral infarction. Ann Neurol 52:566572, 2002

  • 17

    Gainer JL, , Rudolph DB, & Caraway DL: The effect of crocetin on hemorrhagic shock in rats. Circ Shock 41:17, 1993

  • 18

    Goto Y, , Kassell NF, , Hiramatsu K, , Soleau SW, & Lee KS: Effects of intraischemic hypothermia on cerebral damage in a model of reversible focal ischemia. Neurosurgery 32:980985, 1993

    • Search Google Scholar
    • Export Citation
  • 19

    Helms AK, , Whelan HT, & Torbey MT: Hyperbaric oxygen therapy of acute ischemic stroke. Stroke 38:11371139, 2007

  • 20

    Helms AK, , Whelan HT, & Torbey MT: Hyperbaric oxygen therapy of cerebral ischemia. Cerebrovasc Dis 20:417426, 2005

  • 21

    Henninger N, , Bouley J, , Nelligan JM, , Sicard KM, & Fisher M: Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 27:16321642, 2007

    • Search Google Scholar
    • Export Citation
  • 22

    Henninger N, , Küppers-Tiedt L, , Sicard KM, , Günther A, , Schneider D, & Schwab S: Neuroprotective effect of hyperbaric oxygen therapy monitored by MR-imaging after embolic stroke in rats. Exp Neurol 201:316323, 2006

    • Search Google Scholar
    • Export Citation
  • 23

    Hiramatsu K, , Kassell NF, , Goto Y, , Soleau S, & Lee KS: A reproducible model of reversible, focal, neocortical ischemia in Sprague-Dawley rat. Acta Neurochir (Wien) 120:6671, 1993

    • Search Google Scholar
    • Export Citation
  • 24

    Holloway GM, & Gainer JL: The carotenoid crocetin enhances pulmonary oxygenation. J Appl Physiol 65:683686, 1988

  • 25

    Huang ZX, , Kang ZM, , Gu GJ, , Peng GN, , Yun L, & Tao HY, et al. : Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia. Brain Res 1153:204213, 2007

    • Search Google Scholar
    • Export Citation
  • 26

    Huxley VH, & Kutchai H: Effect of diffusion boundary layers on the initial uptake of O2 by red cells. Theory versus experiment Microvasc Res 26:89107, 1983a

    • Search Google Scholar
    • Export Citation
  • 27

    Huxley VH, & Kutchai H: The effect of red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes. J Physiol 316:7583, 1981

    • Search Google Scholar
    • Export Citation
  • 28

    Kawamura S, , Yasui N, , Shirasawa M, & Fukasawa H: Therapeutic effects of hyperbaric oxygenation on acute focal cerebral ischemia in rats. Surg Neurol 34:101106, 1990

    • Search Google Scholar
    • Export Citation
  • 29

    Kim HY, , Singhal AB, & Lo EH: Normobaric hyperoxia extends the reperfusion window in focal cerebral ischemia. Ann Neurol 57:571575, 2005

    • Search Google Scholar
    • Export Citation
  • 30

    Laidig KE, , Daggett V, & Gainer JL: Altering diffusivity in biological solutions via change of solution structure and dynamics. J Am Chem Soc 120:93949395, 1998

    • Search Google Scholar
    • Export Citation
  • 31

    Liu W, , Sood R, , Chen Q, , Sakoglu U, , Hendren J, & Cetin O, et al. : Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem 107:11961205, 2008

    • Search Google Scholar
    • Export Citation
  • 32

    Lou M, , Eschenfelder CC, , Herdegen T, , Brecht S, & Deuschl G: Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke 35:578583, 2004

    • Search Google Scholar
    • Export Citation
  • 33

    Lou M, , Zhang H, , Wang J, , Wen SQ, , Tang ZQ, & Chen YZ, et al. : Hyperbaric oxygen treatment attenuated the decrease in regional glucose metabolism of rats subjected to focal cerebral ischemia: a high resolution positron emission tomography study. Neuroscience 146:555561, 2007

    • Search Google Scholar
    • Export Citation
  • 34

    Menzel M, , Doppenberg EMR, , Zauner A, , Soukup J, , Reinert MM, & Bullock R: Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg 91:110, 1999

    • Search Google Scholar
    • Export Citation
  • 35

    Menzel M, , Doppenberg EMR, , Zauner A, , Soukup J, , Reinert MM, & Clausen T, et al. : Cerebral oxygenation in patients after severe head injury: monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J Neurosurg Anesthesiol 11:240251, 1999

    • Search Google Scholar
    • Export Citation
  • 36

    Nighoghossian N, & Trouillas P: Hyperbaric oxygen in the treatment of acute ischemic stroke: an unsettled issue. J Neurol Sci 150:2731, 1997

    • Search Google Scholar
    • Export Citation
  • 37

    Nighoghossian N, , Trouillas P, , Adeleine P, & Salord F: Hyperbaric oxygen in the treatment of acute ischemic stroke. A doubleblind pilot study. Stroke 26:13691372, 1995

    • Search Google Scholar
    • Export Citation
  • 38

    Neubauer RA, & End E: Hyperbaric oxygenation as an adjunct therapy in strokes due to thrombosis. A review of 122 patients. Stroke 11:297300, 1980

    • Search Google Scholar
    • Export Citation
  • 39

    Nortje J, , Coles JP, , Timofeev I, , Fryer TD, , Aigbirhio FI, & Smielewski P, et al. : Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273281, 2008

    • Search Google Scholar
    • Export Citation
  • 40

    Okonkwo DO, , Wagner J, , Melon DE, , Alden T, , Stone JR, & Helm GA, et al. : Trans-sodium crocetinate increases oxygen delivery to brain parenchyma in rats on oxygen supplementation. Neurosci Lett 352:97100, 2003

    • Search Google Scholar
    • Export Citation
  • 41

    Ostrowski RP, , Colohan AR, & Zhang JH: Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:554571, 2005

    • Search Google Scholar
    • Export Citation
  • 42

    Qin Z, , Karabiyikoglu M, , Hua Y, , Silbergleit R, , He Y, & Keep RF, et al. : Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke 38:13621367, 2007

    • Search Google Scholar
    • Export Citation
  • 43

    Reinert M, , Barth A, , Rothen HU, , Schaller B, , Takala J, & Seiler RW: Effects of cerebral perfusion pressure and increased fraction of inspired oxygen on brain tissue oxygen, lactate and glucose in patients with severe head injury. Acta Neurochir (Wien) 145:341350, 2003

    • Search Google Scholar
    • Export Citation
  • 44

    Rockswold SB, , Rockswold GL, , Vargo JM, , Erickson CA, , Sutton RL, & Bergman TA, et al. : Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg 94:403411, 2001

    • Search Google Scholar
    • Export Citation
  • 45

    Roy JW, , Graham MC, , Griffin AM, & Gainer JL: A novel fluid resuscitation therapy for hemorrhagic shock. Shock 10:213217, 1998

  • 46

    Rusyniak DE, , Kirk MA, , May JD, , Kao LW, , Brizendine EJ, & Welch JL, et al. : Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 34:571574, 2003

    • Search Google Scholar
    • Export Citation
  • 47

    Schäbitz WR, , Schade H, , Heiland S, , Kollmar R, , Bardutzky J, & Henninger N, et al. : Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke 35:11751179, 2004

    • Search Google Scholar
    • Export Citation
  • 48

    Seyde WC, , McKernan DJ, , Laudeman T, , Gainer JL, & Longnecker DE: Carotenoid compound crocetin improves cerebral oxygenation in hemorrhaged rats. J Cereb Blood Flow Metab 6:703707, 1986

    • Search Google Scholar
    • Export Citation
  • 49

    Shin HK, , Dunn AK, , Jones PB, , Boas DA, , Lo EH, & Moskowitz MA, et al. : Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130:16311642, 2007

    • Search Google Scholar
    • Export Citation
  • 50

    Singhal AB: A review of oxygen therapy in ischemic stroke. Neurol Res 29:173183, 2007

  • 51

    Singhal AB, , Benner T, , Roccatagliata L, , Koroshetz WJ, , Schaefer PW, & Lo EH, et al. : A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 36:797802, 2005

    • Search Google Scholar
    • Export Citation
  • 52

    Singhal AB, , Dijkhuizen RM, , Rosen BR, & Lo EH: Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology 58:945952, 2002

    • Search Google Scholar
    • Export Citation
  • 53

    Singhal AB, , Wang X, , Sumii T, , Mori T, & Lo EH: Effects of normobaric hyperoxia in a rat model of focal cerebral ischemiareperfusion. J Cereb Blood Flow Metab 22:861868, 2002

    • Search Google Scholar
    • Export Citation
  • 54

    Solenski N, , Kwan A, , Yanamoto H, , Bennett J, , Kassell NF, & Lee K: Differential elevation of hydroxyl radical in core and penumbra regions during focal reversible cerebral ischemia. Stroke 28:25452551, 1997

    • Search Google Scholar
    • Export Citation
  • 55

    Stennett AK, , Dempsey GL, & Gainer JL: Trans-sodium crocetinate and diffusion enhancement. J Phys Chem B 110:1807818080, 2006

  • 56

    Stennett AK, , Murray RJ, , Roy JW, & Gainer JL: Trans-sodium crocetinate and hemorrhagic shock. Shock 28:339344, 2007

  • 57

    Sunami K, , Takeda Y, , Hashimoto M, & Hirakawa M: Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med 28:28312836, 2000

    • Search Google Scholar
    • Export Citation
  • 58

    Tisdall MM, , Tachtsidis I, , Leung TS, , Elwell CE, & Smith M: Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg 109:424432, 2008

    • Search Google Scholar
    • Export Citation
  • 59

    Tolias CM, , Kumaria A, & Bullock MR: Hyperoxia and traumatic brain injury. J Neurosurg 110:607609, 2009

  • 60

    Tolias CM, , Reinert M, , Seiler R, , Gilman C, , Scharf A, & Bullock MR: Normobaric hyperoxia—induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohortmatched study. J Neurosurg 101:435444, 2004

    • Search Google Scholar
    • Export Citation
  • 61

    Veltkamp R, , Siebing DA, , Sun L, , Heiland S, , Bieber K, & Marti HH, et al. : Hyperbaric oxygen reduces blood-brain barrier damage and edema after transient focal cerebral ischemia. Stroke 36:16791683, 2005

    • Search Google Scholar
    • Export Citation
  • 62

    Veltkamp R, , Sun L, , Herrmann O, , Wolferts G, , Hagmann S, & Siebing DA, et al. : Oxygen therapy in permanent brain ischemia: potential and limitations. Brain Res 1107:185191, 2006

    • Search Google Scholar
    • Export Citation
  • 63

    Veltkamp R, , Warner DS, , Domoki F, , Brinkhous AD, , Toole JF, & Busija DW: Hyperbaric oxygen decreases infarct size and behavioral deficit after transient focal cerebral ischemia in rats. Brain Res 853:6873, 2000

    • Search Google Scholar
    • Export Citation
  • 64

    Weinstein PR, , Anderson GG, & Telles DA: Results of hyperbaric oxygen therapy during temporary middle cerebral artery occlusion in unanesthetized cats. Neurosurgy 20:518524, 1987

    • Search Google Scholar
    • Export Citation
  • 65

    Yamaguchi K, , Nguyen-Phu D, , Scheid P, & Piiper J: Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J Appl Physiol 58:12151224, 1985

    • Search Google Scholar
    • Export Citation
  • 66

    Yin D, & Zhang JH: Delayed and multiple hyperbaric oxygen treatments expand therapeutic window in rat focal cerebral ischemic model. Neurocrit Care 2:206211, 2005

    • Search Google Scholar
    • Export Citation
  • 67

    Yin W, , Badr AE, , Mychaskiw G, & Zhang JH: Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 926:165171, 2002

    • Search Google Scholar
    • Export Citation
  • 68

    Zhang JH, , Lo T, , Mychaskiw G, & Colohan A: Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology 12:6377, 2005

  • 69

    Zhang JH, , Singhal AB, & Toole JF: Oxygen therapy in ischemic stroke. Stroke 34:e152e155, 2003

Metrics

All Time Past Year Past 30 Days
Abstract Views 317 76 13
Full Text Views 100 6 0
PDF Downloads 178 4 0
EPUB Downloads 0 0 0