Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging

Clinical article

Zang-Hee Cho Ph.D.1,2, Hoon-Ki Min M.S.1,2, Se-Hong Oh M.S.1, Jae-Yong Han Ph.D.1, Chan-Woong Park M.D., Ph.D.1, Je-Geun Chi M.D., Ph.D.1,3, Young-Bo Kim M.D., Ph.D.1,4, Sun Ha Paek M.D., Ph.D.5, Andres M. Lozano M.D., Ph.D.6, and Kendall H. Lee M.D., Ph.D.7,8
View More View Less
  • 1 Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea;
  • | 2 Department of Radiological Sciences and Biomedical Engineering, University of California, Irvine, California;
  • | 3 Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea;
  • | 4 Department of Neurosurgery, Gachon University of Medicine and Science, Incheon, Republic of Korea;
  • | 5 Department of Neurosurgery, Ischemia and Hypoxia Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea;
  • | 6 Department of Physiology and Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada;
  • | 7 Departments of Neurologic Surgery and
  • | 8 Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object

A challenge associated with deep brain stimulation (DBS) in treating advanced Parkinson disease (PD) is the direct visualization of brain nuclei, which often involves indirect approximations of stereotactic targets. In the present study, the authors compared T2*-weighted images obtained using 7-T MR imaging with those obtained using 1.5- and 3-T MR imaging to ascertain whether 7-T imaging enables better visualization of targets for DBS in PD.

Methods

The authors compared 1.5-, 3-, and 7-T MR images obtained in 11 healthy volunteers and 1 patient with PD.

Results

With 7-T imaging, distinct images of the brain were obtained, including the subthalamic nucleus (STN) and internal globus pallidus (GPi). Compared with the 1.5- and 3-T MR images of the STN and GPi, the 7-T MR images showed marked improvements in spatial resolution, tissue contrast, and signal-to-noise ratio.

Conclusions

Data in this study reveal the superiority of 7-T MR imaging for visualizing structures targeted for DBS in the management of PD. This finding suggests that by enabling the direct visualization of neural structures of interest, 7-T MR imaging could be a valuable aid in neurosurgical procedures.

Abbreviations used in this paper:

AC-PC = anterior commissure–posterior commissure; DBS = deep brain stimulation; GPe = external globus pallidus; GPi = internal globus pallidus; PD = Parkinson disease; SENSE = sensitivity encoding; SN = substantia nigra; SNR = signal-to-noise ratio; STN = subthalamic nucleus.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Amirnovin R, , Williams ZM, , Cosgrove GR, & Eskandar EN: Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58:1 Suppl ONS96ONS102, 2006

    • Search Google Scholar
    • Export Citation
  • 2

    Andrade-Souza YM, , Schwalb JM, , Hamani C, , Eltahawy H, , Hoque T, & Saint-Cyr J, et al.: Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson's disease. Neurosurgery 56:2 Suppl 360368, 2005

    • Search Google Scholar
    • Export Citation
  • 3

    Ashkan K, , Blomstedt P, , Zrinzo L, , Tisch S, , Yousry T, & Limousin-Dowsey P, et al.: Variability of the subthalamic nucleus: the case for direct MRI guided targeting. Br J Neurosurg 21:197200, 2007

    • Search Google Scholar
    • Export Citation
  • 4

    Baker KB, , Kopell BH, , Malone D, , Horenstein C, , Lowe M, & Phillips MD, et al.: Deep brain stimulation for obsessive-compulsive disorder: using functional magnetic resonance imaging and electrophysiological techniques: technical case report. Neurosurgery 61:5 Suppl 2 E367E368, 2003

    • Search Google Scholar
    • Export Citation
  • 5

    Baldwin LN, , Wachowicz K, , Thomas SD, , Rivest R, & Fallone BG: Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys 34:388399, 2007

    • Search Google Scholar
    • Export Citation
  • 6

    Bejjani BP, , Dormont D, , Pidoux B, , Yelnik J, , Damier P, & Arnulf I, et al.: Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615625, 2000

    • Search Google Scholar
    • Export Citation
  • 7

    Benabid AL: Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13:696706, 2003

  • 8

    Benabid AL, , Krack PP, , Benazzouz A, , Limousin P, , Koudsie A, & Pollak P: Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: methodologic aspects and clinical criteria. Neurology 55:12 Suppl 6 S40S44, 2000

    • Search Google Scholar
    • Export Citation
  • 9

    Benabid AL, , Pollak P, , Gross C, , Hoffmann D, , Benazzouz A, & Gao DM, et al.: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson's disease. Stereotact Funct Neurosurg 62:7684, 1994

    • Search Google Scholar
    • Export Citation
  • 10

    Benazzouz A, & Hallett M: Mechanism of action of deep brain stimulation. Neurology 55:12 Suppl 6 S13S16, 2000

  • 11

    Bernstein MA, , Thomasson DM, & Perman WH: Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. Med Phys 16:813817, 1989

    • Search Google Scholar
    • Export Citation
  • 12

    Brice J, & McLellan L: Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1:12211222, 1980

  • 13

    Brierley JB, & Beck E: The significance in human stereotactic brain surgery of individual variation in the diencephalon and globus pallidus. J Neurol Neurosurg Psychiatry 22:287298, 1959

    • Search Google Scholar
    • Export Citation
  • 14

    Chavhan GB, , Babyn PS, , Thomas B, , Shroff MM, & Haacke EM: Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:14331449, 2009

    • Search Google Scholar
    • Export Citation
  • 15

    Cho ZH: 7.0 Tesla MRI Brain Atlas: In Vivo Atlas with Cryomacrotome Correlation New York, Springer, 2009

  • 16

    Cho ZH, , Han JY, , Hwang SI, , Kim DS, , Kim KN, & Kim NB, et al.: Quantitative analysis of the hippocampus using images obtained from 7.0T MRI. Neuroimage 49:21342140, 2010

    • Search Google Scholar
    • Export Citation
  • 17

    Cho ZH, , Kim YB, , Han JY, , Min HK, , Lim KN, & Choi SH, et al.: New brain atlas—mapping the human brain in vivo with 7.0T MRI and comparison with postmortem histology: will these images change modern medicine?. Int J Imaging Syst Technol 18:28, 2008

    • Search Google Scholar
    • Export Citation
  • 18

    Cuny E, , Guehl D, , Burbaud P, , Gross C, , Dousset V, & Rougier A: Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591597, 2002

    • Search Google Scholar
    • Export Citation
  • 19

    Deep-Brain Stimulation for Parkinson's Disease Study Group: Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 345:956963, 2001

    • Search Google Scholar
    • Export Citation
  • 20

    den Dunnen WF, & Staal MJ: Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 20:893898, 2005

    • Search Google Scholar
    • Export Citation
  • 21

    Dormont D, , Ricciardi KG, , Tandé D, , Parain K, , Menuel C, & Galanaud D, et al.: Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:15161523, 2004

    • Search Google Scholar
    • Export Citation
  • 22

    Edelstein WA, , Glover GH, , Hardy CJ, & Redington RW: The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604618, 1986

  • 23

    Greene P: Deep-brain stimulation for generalized dystonia. N Engl J Med 352:498500, 2005

  • 24

    Guridi J, , Rodriguez-Oroz MC, , Lozano AM, , Moro E, , Albanese A, & Nuttin B, et al.: Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology 55:12 Suppl 6 S21S28, 2000

    • Search Google Scholar
    • Export Citation
  • 25

    Halpern C, , Hurtig H, , Jaggi J, , Grossman M, , Won M, & Baltuch G: Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord 13:116, 2007

    • Search Google Scholar
    • Export Citation
  • 26

    Hamani C, , Richter E, , Schwalb JM, & Lozano AM: Bilateral subthalamic nucleus stimulation for Parkinson's disease: a systematic review of the clinical literature. Neurosurgery 56:13131324, 2005

    • Search Google Scholar
    • Export Citation
  • 27

    Hamani C, , Richter EO, , Andrade-Souza Y, , Hutchison W, , Saint-Cyr JA, & Lozano AM: Correspondence of microelectrode mapping with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63:249253, 2005

    • Search Google Scholar
    • Export Citation
  • 28

    Hosobuchi Y, , Adams JE, & Rutkin B: Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol 29:158161, 1973

    • Search Google Scholar
    • Export Citation
  • 29

    Kringelbach ML, , Jenkinson N, , Owen SL, & Aziz TZ: Translational principles of deep brain stimulation. Nat Rev Neurosci 8:623635, 2007

  • 30

    Lee KH, , Blaha CD, , Garris PA, , Mohseni P, , Horne AE, & Bennet KE, et al.: Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation 12:85103, 2009

    • Search Google Scholar
    • Export Citation
  • 31

    Li TQ, , van Gelderen P, , Merkle H, , Talagala L, , Koretsky AP, & Duyn J: Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T. Neuroimage 32:10321040, 2006

    • Search Google Scholar
    • Export Citation
  • 32

    Machado A, , Rezai AR, , Kopell BH, , Gross RE, , Sharan AD, & Benabid AL: Deep brain stimulation for Parkinson's disease: surgical technique and perioperative management. Mov Disord 21:Suppl 14 S247S258, 2006

    • Search Google Scholar
    • Export Citation
  • 33

    Mack A, , Wolff R, , Scheib S, , Rieker M, , Weltz D, & Mack G, et al.: Analyzing 3-tesla magnetic resonance imaging units for implementation in radiosurgery. J Neurosurg 102:Suppl 158164, 2005

    • Search Google Scholar
    • Export Citation
  • 34

    Mallet L, , Polosan M, , Jaafari N, , Baup N, , Welter ML, & Fontaine D, et al.: STOC Study Group: Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359:21212134, 2008

    • Search Google Scholar
    • Export Citation
  • 35

    Mallet L, , Schüpbach M, , N'Diaye K, , Remy P, , Bardinet E, & Czernecki V, et al.: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:1066110666, 2007

    • Search Google Scholar
    • Export Citation
  • 36

    Mayberg HS, , Lozano AM, , Voon V, , McNeely HE, , Seminowicz D, & Hamani C, et al.: Deep brain stimulation for treatment-resistant depression. Neuron 45:651660, 2005

    • Search Google Scholar
    • Export Citation
  • 37

    McIntyre CC, , Savasta M, , Kerkerian-Le Goff L, & Vitek JL: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:12391248, 2004

    • Search Google Scholar
    • Export Citation
  • 38

    Nuttin BJ, , Gabriëls LA, , Cosyns PR, , Meyerson BA, , Andréewitch S, & Sunaert SG, et al.: Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52:12631274, 2003

    • Search Google Scholar
    • Export Citation
  • 39

    Østergaard K, , Sunde N, & Dupont E: Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson's disease and motor fluctuations. Mov Disord 17:693700, 2002

    • Search Google Scholar
    • Export Citation
  • 40

    Pahapill PA, & Lozano AM: The pedunculopontine nucleus and Parkinson's disease. Brain 123:17671783, 2000

  • 41

    Plaha P, , Khan S, & Gill SS: Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry 79:504513, 2008

    • Search Google Scholar
    • Export Citation
  • 42

    Rasche D, , Rinaldi PC, , Young RF, & Tronnier VM: Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg Focus 21:6 E8, 2006

    • Search Google Scholar
    • Export Citation
  • 43

    Rehncrona S, , Johnels B, , Widner H, , Törnqvist AL, , Hariz M, & Sydow O: Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord 18:163170, 2003

    • Search Google Scholar
    • Export Citation
  • 44

    Rodriguez-Oroz MC, , Obeso JA, , Lang AE, , Houeto JL, , Pollak P, & Rehncrona S, et al.: Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up. Brain 128:22402249, 2005

    • Search Google Scholar
    • Export Citation
  • 45

    Schaltenbrand G, & Wahren W: Atlas for Stereotaxy of the Human Brain ed 2 Stuttgart, Thieme, 1977

  • 46

    Siemens: 7T MRI* Explore the Future of MRI. Today (http://www.medical.siemens.com/webapp/wcs/stores/servlet/PSGenericDisplay~q_catalogId~e_-11~a_catTree~e_100001~a_langId~e_-11~a_pageId~e_68112~a_storeId~e_10001.htm) [Accessed March 8, 2010]

    • Search Google Scholar
    • Export Citation
  • 47

    Slavin KV, , Thulborn KR, , Wess C, & Nersesyan H: Direct visualization of the human subthalamic nucleus with 3T MR imaging. AJNR Am J Neuroradiol 27:8084, 2006

    • Search Google Scholar
    • Export Citation
  • 48

    Smith SM, , Jenkinson M, , Woolrich MW, , Beckmann CF, , Behrens TEJ, & Johansen-Berg H, et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:208219, 2004

    • Search Google Scholar
    • Export Citation
  • 49

    Starr PA, , Christine CW, , Theodosopoulos PV, , Lindsey N, , Byrd D, & Mosley A, et al.: Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370387, 2002

    • Search Google Scholar
    • Export Citation
  • 50

    Starr PA, , Vitek JL, & Bakay RAE: Ablative surgery and deep brain stimulation for Parkinson's disease. Neurosurgery 43:9891015, 1998

  • 51

    Starr PA, , Vitek JL, , DeLong M, & Bakay RA: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303314, 1999

    • Search Google Scholar
    • Export Citation
  • 52

    Sterio D, , Zonenshayn M, , Mogilner AY, , Rezai AR, , Kiprovski K, & Kelly PJ, et al.: Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:5869, 2002

    • Search Google Scholar
    • Export Citation
  • 53

    Taren J, , Guiot G, , Derome P, & Trigo JC: Thalamic target localization in stereotaxic surgery: a comparison of the accuracy of radiologic and electrophysiologic methods. Confin Neurol 31:116122, 1969

    • Search Google Scholar
    • Export Citation
  • 54

    Temel Y, , Wilbrink P, , Duits A, , Boon P, , Tromp S, & Ackermans L, et al.: Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. Neurosurgery 61:5 Suppl 2 346357, 2007

    • Search Google Scholar
    • Export Citation
  • 55

    Terao T, , Takahashi H, , Yokochi F, , Taniguchi M, , Okiyama R, & Hamada I: Hemorrhagic complication of stereotactic surgery in patients with movement disorders. J Neurosurg 98:12411246, 2003

    • Search Google Scholar
    • Export Citation
  • 56

    Toda H, , Sawamoto N, , Hanakawa T, , Saiki H, , Matsumoto S, & Okumura R, et al.: A novel composite targeting method using high-field magnetic resonance imaging for subthalamic nucleus deep brain stimulation. Clinical article. J Neurosurg 111:737745, 2009

    • Search Google Scholar
    • Export Citation
  • 57

    Van Buren JM, & MacCubbin DA: An outline atlas of the human basal ganglia with estimation of anatomical variants. J Neurosurg 19:811839, 1962

    • Search Google Scholar
    • Export Citation
  • 58

    Vidailhet M, , Vercueil L, , Houeto JL, , Krystkowiak P, , Benabid AL, & Cornu P, et al.: Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352:459467, 2005

    • Search Google Scholar
    • Export Citation
  • 59

    Volz S, , Hattingen E, , Preibisch C, , Gasser T, & Deichmann R: Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus. Neuroimage 45:11351143, 2009

    • Search Google Scholar
    • Export Citation
  • 60

    Wang D, , Strugnell W, , Cowin G, , Doddrell DM, & Slaughter R: Geometric distortion in clinical MRI systems Part I: evaluation using a 3D phantom. Magn Reson Imaging 22:12111221, 2004

    • Search Google Scholar
    • Export Citation
  • 61

    Woolrich MW, , Jbabdi S, , Patenaude B, , Chappell M, , Makni S, & Behrens T, et al.: Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:1 Suppl S173S186, 2009

    • Search Google Scholar
    • Export Citation
  • 62

    Yacoub E, , Shmuel A, , Pfeuffer J, , Van De Moortele PF, , Adriany G, & Andersen P, et al.: Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588594, 2001

    • Search Google Scholar
    • Export Citation
  • 63

    Zwanenburg JJ, , Hendrikse J, , Visser F, , Takahara T, & Luijten PR: Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0 Tesla. Eur Radiol [epub ahead of print] 2009

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1261 334 31
Full Text Views 381 64 4
PDF Downloads 163 40 4
EPUB Downloads 0 0 0