A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease

Clinical article

Restricted access

Object

The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients.

Methods

Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces.

Results

Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus.

Conclusions

This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Abbreviations used in this paper: AC-PC = anterior commissure–posterior commissure; DBS = deep brain stimulation; PD = Parkinson disease; ROI = region of interest; RU = red nucleus; SN = substantia nigra; STN = subthalamic nucleus; SW = Schaltenbrand and Wahren.
Article Information

Contributor Notes

Address correspondence to: Jérôme Yelnik, M.D., Institut National de la Santé et de la Recherche Médicale U679, Hôpital de la Salpêtrière, 47, Boulevard de l'Hôpital, 75013, Paris, France. email: jerome.yelnik@upmc.fr.
Headings
References
  • 1

    Barra VBoire JY: Automatic segmentation of subcortical brain structures in MR images using information fusion. IEEE Trans Med Imaging 20:5495582001

    • Search Google Scholar
    • Export Citation
  • 2

    Bejjani BPDormont DPidoux BYelnik JDamier PArnulf I: Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:6156252000

    • Search Google Scholar
    • Export Citation
  • 3

    Bondiau PYMalandain GChanalet SMarcy PYHabrand JLFauchon F: Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys 61:2892982005

    • Search Google Scholar
    • Export Citation
  • 4

    Bueno GMusse OHeitz FArmspach JP: Three-dimensional segmentation of anatomical structures in MR images on large data bases. Magn Reson Imaging 19:73882001

    • Search Google Scholar
    • Export Citation
  • 5

    Cachier PBardinet EDormont DPennec XAyache N: Iconic feature based nonrigid registration: the PASHA algorithm. Comput Vis Image Underst 89:2722982003

    • Search Google Scholar
    • Export Citation
  • 6

    Caire FDerost PCoste JBonny JMDurif FFrenoux E: [Subthalamic deep brain stimulation for severe idiopathic Parkinson's disease. Location study of the effective contacts.]. Neurochirurgie 52:15252006. (Fr)

    • Search Google Scholar
    • Export Citation
  • 7

    Chakravarty MMBertrand GHodge CPSadikot AFCollins DL: The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30:3593762006

    • Search Google Scholar
    • Export Citation
  • 8

    D'Haese PFCetinkaya EKonrad PEKao CDawant BM: Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging 24:146914782005

    • Search Google Scholar
    • Export Citation
  • 9

    Dawant BMHartmann SLThirion JPMaes FVandermeulen DDemaerel P: Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: part I, methodology and validation on normal subjects. IEEE Trans Med Imaging 18:9099161999

    • Search Google Scholar
    • Export Citation
  • 10

    Dormont DRicciardi KGTandé DParain KMenuel CGalanaud D: Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25:151615232004

    • Search Google Scholar
    • Export Citation
  • 11

    Finnis KWStarreveld YPParrent AGSadikot AFPeters TM: Three-dimensional database of subcortical electrophysiology for image-guided stereotactic functional neurosurgery. IEEE Trans Med Imaging 22:931042003

    • Search Google Scholar
    • Export Citation
  • 12

    Fischl BSalat DHBusa EAlbert MDieterich MHaselgrove C: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:3413552002

    • Search Google Scholar
    • Export Citation
  • 13

    Ganser KADickhaus HMetzner RWirtz CR: A deformable digital brain atlas system according to Talairach and Tournoux. Med Image Anal 8:3222004

    • Search Google Scholar
    • Export Citation
  • 14

    Gonzalez Ballester MAZisserman ABrady M: Segmentation and measurement of brain structures in MRI including confidence bounds. Med Image Anal 4:1892002000

    • Search Google Scholar
    • Export Citation
  • 15

    Guo TFinnis KWParrent AGPeters TM: Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries. Comput Aided Surg 11:2312392006

    • Search Google Scholar
    • Export Citation
  • 16

    Hamel WFietzek UMorsnowski ASchrader BHerzog JWeinert D: Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74:103610462003

    • Search Google Scholar
    • Export Citation
  • 17

    Kikinis RShenton MEIosifescu DVMcCarley RWSaiviroonporn PHokama H: A digital brain atlas for surgical planning, model driven segmentation and teaching. IEEE Trans Vis Comput Graph 2:2322411996

    • Search Google Scholar
    • Export Citation
  • 18

    Lehericy SBardinet ETremblay LVan de Moortele PFPochon JBDormont D: Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16:1491612006

    • Search Google Scholar
    • Export Citation
  • 19

    Mai JKAssheuer JPaxinos G: Atlas of the Human Brain New YorkAcademic Press1997

  • 20

    Mallet LSchupbach MN'Diaye KRemy PBardinet ECzernecki V: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci U S A 104:10661106662007

    • Search Google Scholar
    • Export Citation
  • 21

    Mangin JFPoupon FDuchesnay ERiviere DCachia ACollins DL: Brain morphometry using 3D moment invariants. Med Image Anal 8:1871962004

    • Search Google Scholar
    • Export Citation
  • 22

    Morel AMagnin MJeanmonod D: Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:5886301997

  • 23

    Niemann KMennicken VRJeanmonod DMorel A: The Morel stereotactic atlas of the human thalamus: atlas-to-MR registration of internally consistent canonical model. Neuroimage 12:6016162000

    • Search Google Scholar
    • Export Citation
  • 24

    Niemann KNaujokat CPohl GWollner Cvon Keyserlingk D: Verification of the Schaltenbrand and Wahren stereotactic atlas. Acta Neurochir (Wien) 129:72811994

    • Search Google Scholar
    • Export Citation
  • 25

    Niemann Kvan Nieuwenhofen I: One atlas—three anatomies: relationships of the Schaltenbrand and Wahren microscopic data. Acta Neurochir (Wien) 141:102510381999

    • Search Google Scholar
    • Export Citation
  • 26

    Nowinski WLBelov DPollak PBenabid AL: Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 57:3193302005

    • Search Google Scholar
    • Export Citation
  • 27

    Nowinski WLFang ANguyen BTRaphel JKJagannathan LRaghavan R: Multiple brain atlas database and atlasbased neuroimaging system. Comput Aided Surg 2:42661997

    • Search Google Scholar
    • Export Citation
  • 28

    Nowinski WLThirunavuukarasuu A: Atlas-assisted localization analysis of functional images. Med Image Anal 5:2072202001

  • 29

    Pitiot ADelingette HThompson PMAyache N: Expert knowledge-guided segmentation system for brain MRI. Neuroimage 23:1 SupplS85S962004

    • Search Google Scholar
    • Export Citation
  • 30

    Pollo CVillemure JGVingerhoets FJGhika JMaeder PMeuli R: Magnetic resonance artifact induced by the electrode Activa 3389: an in vitro and in vivo study. Acta Neurochir (Wien) 146:1611642004

    • Search Google Scholar
    • Export Citation
  • 31

    Prima SOurselin SAyache N: Computation of the mid-sagittal plane in 3D brain images. IEEE Trans Med Imaging 21:1221382002

  • 32

    Saint-Cyr JAHoque TPereira LCDostrovsky JOHutchison WDMikulis DJ: Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg 97:115211662002

    • Search Google Scholar
    • Export Citation
  • 33

    Schaltenbrand GWahren W: Atlas for Stereotaxy of the Human Brain StuttgartGeorg-Thieme-Verlag1977

  • 34

    Shen DHerskovits EHDavatzikos C: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Trans Med Imaging 20:2572702001

    • Search Google Scholar
    • Export Citation
  • 35

    St-Jean PSadikot AFCollins LClonda DKasrai REvans AC: Automated atlas integration and interactive threedimensional visualization tools for planning and guidance in functional neurosurgery. IEEE Trans Med Imaging 17:6726801998

    • Search Google Scholar
    • Export Citation
  • 36

    Stefanescu RPennec XAyache N: Grid powered nonlinear image registration with locally adaptive regularization. Med Image Anal 8:3253422004

    • Search Google Scholar
    • Export Citation
  • 37

    Talairach JTournoux P: Co-planar Stereotaxic Atlas of the Human Brain New YorkThieme Medical Publishers, Inc.1988

  • 38

    Xu MNowinski WL: Talairach-Tournoux brain atlas registration using a metalforming principle-based finite element method. Med Image Anal 5:2712792001

    • Search Google Scholar
    • Export Citation
  • 39

    Yelnik JBardinet EDormont DMalandain GOurselin STandé D: A three-dimensional, histological and deformable atlas of the human basal ganglia. I Atlas construction based on immunohistochemical and MRI data. Neuroimage 34:6186382007

    • Search Google Scholar
    • Export Citation
  • 40

    Yelnik JDamier PDemeret SGervais DBardinet EBejjani BP: Localization of stimulating electrodes in patients with Parkinson disease by using a three-dimensional atlasmagnetic resonance imaging coregistration method. J Neurosurg 99:89992003

    • Search Google Scholar
    • Export Citation
  • 41

    Yoshida M: Creation of a three-dimensional atlas by interpolation from Schaltenbrand-Bailey's atlas. Appl Neurophysiol 50:45481987

TrendMD
Cited By
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 448 371 40
Full Text Views 172 54 10
PDF Downloads 79 42 6
EPUB Downloads 0 0 0
PubMed
Google Scholar