Cerebrovascular stereolithographic biomodeling for aneurysm surgery

Technical note

View More View Less
  • 1 Departments of Neurosurgery and Neuroradiology, Landesnervenklinik Wagner Jauregg, Linz, Austria; and Neurosurgical Clinic, Medical School Hannover, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

✓ Stereolithographic (SL) biomodeling is a new technology that allows three-dimensional (3D) imaging data to be used in the manufacture of accurate solid plastic replicas of anatomical structures. The authors describe their experience with a patient series in which this relatively new visualization method was used in surgery for cerebral aneurysms.

Using the rapid prototyping technology of stereolithography, 13 solid anatomical biomodels of cerebral aneurysms with parent and surrounding vessels were manufactured based on 3D computerized tomography scans (three cases) or 3D rotational angiography (10 cases). The biomodels were used for diagnosis, operative planning, surgical simulation, instruction for less experienced neurosurgeons, and patient education. The correspondence between the biomodel and the intraoperative findings was verified in every case by comparison with the intraoperative video. The utility of the biomodels was judged by three experienced and two less experienced neurosurgeons specializing in microsurgery.

A prospective comparison of SL biomodels with intraoperative findings proved that the biomodels replicated the anatomical structures precisely. Even the first models, which were rather rough, corresponded to the intraoperative findings. Advances in imaging resolution and postprocessing methods helped overcome the initial limitations of the image threshold. The major advantage of this technology is that the surgeon can closely study complex cerebrovascular anatomy from any perspective by using a haptic, “real reality” biomodel, which can be held, allowing simulation of intraoperative situations and anticipation of surgical challenges. One drawback of SL biomodeling is the time it takes for the model to be manufactured and delivered. Another is that the synthetic resin of the biomodel is too rigid to use in dissecting exercises. Further development and refinement of the method is necessary before the model can demonstrate a mural thrombus or calcification or the relationship of the aneurysm to nonvascular structures.

This series of 3D SL biomodels demonstrates the feasibility and clinical utility of this new visualization medium for cerebrovascular surgery. This medium, which elicits the intuitive imagination of the surgeon, can be effectively added to conventional imaging techniques. Overcoming the present limitations posed by material properties, visualization of intramural particularities, and representation of the relationship of the lesion to parenchymal and skeletal structures are the focus in an ongoing trial.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1.

    Barker TM, , Earwaker WJ, & Frost N, et al: Integration of 3-d medical imaging and rapid prototyping to create stereolithographic models. Australas Phys Eng Sci Med 16:7985, 1993 Barker TM, Earwaker WJ, Frost N, et al: Integration of 3-d medical imaging and rapid prototyping to create stereolithographic models. Australas Phys Eng Sci Med 16:79–85, 1993

    • Search Google Scholar
    • Export Citation
  • 2.

    Begall K, & Vorwerk U: Artificial petrous bone produced by stereolithography for microsurgical dissecting exercises: ORL. J Otorhinolaryngol Relat Spec 60:241245, 1998 Begall K, Vorwerk U: Artificial petrous bone produced by stereolithography for microsurgical dissecting exercises: ORL. J Otorhinolaryngol Relat Spec 60:241–245, 1998

    • Search Google Scholar
    • Export Citation
  • 3.

    Berry E, , Marsden A, & Dalgarno KW, et al: Flexible tubular replicas of abdominal aortic aneurysms. Proc Inst Mech Eng 216:211214, 2002 Berry E, Marsden A, Dalgarno KW, et al: Flexible tubular replicas of abdominal aortic aneurysms. Proc Inst Mech Eng 216:211–214, 2002

    • Search Google Scholar
    • Export Citation
  • 4.

    D'Urso PS, , Askin G, & Earwaker JS, et al: Spinal biomodeling. Spine 24:12471251, 1999 D'Urso PS, Askin G, Earwaker JS, et al: Spinal biomodeling. Spine 24:1247–1251, 1999

    • Search Google Scholar
    • Export Citation
  • 5.

    D'Urso PS, & Thompson RG: Fetal biomodelling. Aust N Z J Obstet Gynaecol 38:205207, 1998 D'Urso PS, Thompson RG: Fetal biomodelling. Aust N Z J Obstet Gynaecol 38:205–207, 1998

    • Search Google Scholar
    • Export Citation
  • 6.

    D'Urso PS, , Thompson RG, & Atkinson RL, et al: Cerebrovascular biomodelling: a technical note. Surg Neurol 52:490500, 1999 D'Urso PS, Thompson RG, Atkinson RL, et al: Cerebrovascular biomodelling: a technical note. Surg Neurol 52:490–500, 1999

    • Search Google Scholar
    • Export Citation
  • 7.

    Erickson DM, , Chance D, & Schmitt S, et al: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg 57:10401043, 1999 Erickson DM, Chance D, Schmitt S, et al: An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg 57:1040–1043, 1999

    • Search Google Scholar
    • Export Citation
  • 8.

    Friedman MH, , Kuban BD, & Schmalbrock P, et al: Fabrication of vascular replicas from magnetic resonance images. J Biomed Engineering 117:364366, 1995 Friedman MH, Kuban BD, Schmalbrock P, et al: Fabrication of vascular replicas from magnetic resonance images. J Biomed Engineering 117:364–366, 1995

    • Search Google Scholar
    • Export Citation
  • 9.

    Hoffmann J, , Schwaderer E, & Dammann F: The use of hybrid stereolithographic models for the planning of complex craniofacial procedures. Biomed Tech 47 (Suppl 1):278281, 2002 Hoffmann J, Schwaderer E, Dammann F: The use of hybrid stereolithographic models for the planning of complex craniofacial procedures. Biomed Tech 47 (Suppl 1):278–281, 2002

    • Search Google Scholar
    • Export Citation
  • 10.

    Kato K, , Ishiguchi T, & Maruyama K, et al: Accuracy of plastic replica of aortic aneurysm using 3D-CT data for transluminal stentgrafting: experimental and clinical evaluation. J Comput Assist Tomogr 25:300304, 2001 Kato K, Ishiguchi T, Maruyama K, et al: Accuracy of plastic replica of aortic aneurysm using 3D-CT data for transluminal stentgrafting: experimental and clinical evaluation. J Comput Assist Tomogr 25:300–304, 2001

    • Search Google Scholar
    • Export Citation
  • 11.

    Koyama T, , Okudera H, & Kobayashi S: Computer-assisted design of a basilar aneurysm in open microsurgery. J Comput Aided Surg 1:7882, 1995 Koyama T, Okudera H, Kobayashi S: Computer-assisted design of a basilar aneurysm in open microsurgery. J Comput Aided Surg 1:78–82, 1995

    • Search Google Scholar
    • Export Citation
  • 12.

    Mankovich NJ, , Cheeseman AM, & Stroker NG: The display of three-dimensional anatomy with stereolithographic models. J Digital Imaging 3:200203, 1990 Mankovich NJ, Cheeseman AM, Stroker NG: The display of three-dimensional anatomy with stereolithographic models. J Digital Imaging 3:200–203, 1990

    • Search Google Scholar
    • Export Citation
  • 13.

    Migaud H, , Cortet B, & Assaker R, et al: Interet d'un modele asseux sythetique cree par stereolithographie pour la planification preoperative. Correction d'une deformation femurale complexe dans le cadre d'une dysplasie fibreuse. Rev Chir Orthop Reparatrice Appar Mot 83:156159, 1997 Migaud H, Cortet B, Assaker R, et al: Interet d'un modele asseux sythetique cree par stereolithographie pour la planification preoperative. Correction d'une deformation femurale complexe dans le cadre d'une dysplasie fibreuse. Rev Chir Orthop Reparatrice Appar Mot 83:156–159, 1997

    • Search Google Scholar
    • Export Citation
  • 14.

    Papadopoulos MA, , Christou PK, & Christou PK, et al: Three-dimensional craniofacial reconstruction imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:382393, 2002 Papadopoulos MA, Christou PK, Christou PK, et al: Three-dimensional craniofacial reconstruction imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:382–393, 2002

    • Search Google Scholar
    • Export Citation
  • 15.

    Pentecost JO, , Sahn DJ, & Thornburg BL, et al: Graphical and stereolithographic models of the developing human heart lumen. Comput Med Imaging Graph 25:459463, 2001 Pentecost JO, Sahn DJ, Thornburg BL, et al: Graphical and stereolithographic models of the developing human heart lumen. Comput Med Imaging Graph 25:459–463, 2001

    • Search Google Scholar
    • Export Citation
  • 16.

    Raic K, , Jansen T, & von Rymon-Lipinski B, et al: Fast generation of stereolithographic models. Biomed Tech 47 (Suppl 1):8385, 2002 Raic K, Jansen T, von Rymon-Lipinski B, et al: Fast generation of stereolithographic models. Biomed Tech 47 (Suppl 1):83–85, 2002

    • Search Google Scholar
    • Export Citation
  • 17.

    Recheis W, , Weber GW, & Schafer K, et al: New methods and techniques in anthropology. Coll Antropol 23:495509, 1999 Recheis W, Weber GW, Schafer K, et al: New methods and techniques in anthropology. Coll Antropol 23:495–509, 1999

    • Search Google Scholar
    • Export Citation
  • 18.

    Santler G, , Karcher H, & Kern R: Stereolithographie modelle vs. gefraste 3-D modelle. Produktion, Indikationen und Genauigkeit. Mund Kiefer Gesichtschir 2:9195, 1998 Santler G, Karcher H, Kern R: Stereolithographie modelle vs. gefraste 3-D modelle. Produktion, Indikationen und Genauigkeit. Mund Kiefer Gesichtschir 2:91–95, 1998

    • Search Google Scholar
    • Export Citation
  • 19.

    Saringer W, , Nobauer-Huhmann I, & Knosp E: Cranioplasty with individual carbon fibre reinforced polymere (CFRP) medical grade implants based on CAD/CAM technique. Acta Neurochir 144:11931203, 2002 Saringer W, Nobauer-Huhmann I, Knosp E: Cranioplasty with individual carbon fibre reinforced polymere (CFRP) medical grade implants based on CAD/CAM technique. Acta Neurochir 144:1193–1203, 2002

    • Search Google Scholar
    • Export Citation
  • 20.

    Sodian R, , Loebe M, & Hein A, et al: Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J 48:1216, 2002 Sodian R, Loebe M, Hein A, et al: Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J 48:12–16, 2002

    • Search Google Scholar
    • Export Citation
  • 21.

    Stroker NG, , Mankovich NJ, & Valentino D: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg 50:466471, 1992 Stroker NG, Mankovich NJ, Valentino D: Stereolithographic models for surgical planning: preliminary report. J Oral Maxillofac Surg 50:466–471, 1992

    • Search Google Scholar
    • Export Citation
  • 22.

    Tomancok B, , Wurm G, & Holl K, et al: Cranioplasty with computer-generated carbon fiber reinforced plastic implants, in Lemke HU, , Vannier MW, & Inamura K (eds): Computer Assisted Radiology and Surgery. New York: Elsevier Science, 1997, p 1034 Tomancok B, Wurm G, Holl K, et al: Cranioplasty with computer-generated carbon fiber reinforced plastic implants, in Lemke HU, Vannier MW, Inamura K (eds): Computer Assisted Radiology and Surgery. New York: Elsevier Science, 1997, p 1034

    • Search Google Scholar
    • Export Citation
  • 23.

    Webb PA: A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24:149153, 2000 Webb PA: A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24:149–153, 2000

    • Search Google Scholar
    • Export Citation
  • 24.

    Yedavalli RV, , Loth F, & Yardimci A, et al: Construction of a physical model of the human carotid artery based upon in vivo magnetic resonance images. J Biomech Eng 123:372376, 2001 Yedavalli RV, Loth F, Yardimci A, et al: Construction of a physical model of the human carotid artery based upon in vivo magnetic resonance images. J Biomech Eng 123:372–376, 2001

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1258 598 69
Full Text Views 281 24 3
PDF Downloads 178 23 3
EPUB Downloads 0 0 0