Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Giselle Coelho x
  • Refine by Level: All x
  • Refine by Access: user x
Clear All Modify Search
Open access


Giselle Coelho, Eduardo Vieira, Jose Hinojosa, and Hans Delye

Craniosynostosis is a premature fusion of cranial sutures, and it requires surgery to decrease cranial pressure and remodel the affected areas. However, mastering these procedures requires years of supervised training. Several neurosurgical training simulators have been created to shorten the learning curve. Laboratory training is fundamental for acquiring familiarity with the necessary techniques and skills to properly handle instruments. This video presents a novel simulator for training on the endoscopic treatment for scaphocephaly and trigonocephaly, covering all aspects of the procedure, from patient positioning to performing osteotomies.

The video can be found here:

Open access


Nícollas Nunes Rabelo, Antonio Carlos Samaia da Silva Coelho, João Paulo Mota Telles, Giselle Coelho, Caio Santos de Souza, Tania Regina Tozetto-Mendoza, Natan Ponzoni Galvani de Oliveira, Paulo Henrique Braz-Silva, Manoel Jacobsen Teixeira, and Eberval Gadelha Figueiredo


Subarachnoid hemorrhages secondary to intracranial aneurysms (IAs) are events of high mortality. These neurological vascular diseases arise from local and systemic inflammation that culminates in vessel wall changes. They may also have a possible relationship with chronic viral infections, such as human herpesvirus (HHV), and especially Epstein–Barr virus (EBV), which causes several medical conditions. This is the first description of the presence of HHV deoxyribonucleic acid (DNA) in a patient with IA.


A 61-year-old woman with a downgraded level of consciousness underwent radiological examinations that identified a 10-mm ruptured aneurysm in the anterior communicating artery. A microsurgery clip was performed to definitively treat the aneurysm and occurred without surgical complications. Molecular analysis of the material obtained revealed the presence of EBV DNA in the aneurysm wall. The patient died 21 days after admission due to clinical complications and brain swelling.


This is the first description of the presence of herpesvirus DNA in a patient with IA, presented in 2.8% of our data. These findings highlight that viral infection may contribute to the pathophysiology and is an additional risk factor for IA formation, progression, and rupture by modulating vessel wall inflammation and structural changes in chronic infections.

Restricted access


Eylem Ocal, Eliana E. Kim, Milagros Niquen-Jimenez, Gleice Salibe de Oliveira, Souad Bakhti, Suchanda Bhattacharjee, Giselle Coelho, Wirginia Maixner, Martina Messing-Jünger, Nabila Taghlit, and Nelci Zanon

Pediatric neurosurgery is an ever-evolving field, and at the heart of it are talented and hardworking neurosurgeons who harness technology and research to enhance the standard of neurosurgical care for children. Recent studies have found that female neurosurgeons tend to choose a career focused on pediatric neurosurgery more than other subspecialties. However, the achievements and contributions of women in pediatric neurosurgery are not well known. To address this, an international working group of pediatric neurosurgeons was established from the World Federation of Neurosurgical Societies (WFNS) Women in Neurosurgery (WINS) group and Pediatric Neurosurgery Committee. The working group reviewed the current literature and collected information through personal communications with the global WINS network. Despite the increasing number of women entering neurosurgical training, the number of female pediatric neurosurgeons is still a mere handful worldwide. In this article, the authors summarize the current status of female pediatric neurosurgeons across the globe, highlighting their achievements as well as the gender bias and challenges that they face at every level of progression of their career. A better organized pediatric neurosurgery workforce, with more female representation and mentorship, would encourage future generations of diverse genders toward a career in this field.

Free access


Giselle Coelho, Nicollas Nunes Rabelo, Eduardo Vieira, Kid Mendes, Gustavo Zagatto, Ricardo Santos de Oliveira, Cassio Eduardo Raposo-Amaral, Maurício Yoshida, Matheus Rodrigues de Souza, Caroline Ferreira Fagundes, Manoel Jacobsen Teixeira, and Eberval Gadelha Figueiredo


The main objective of neurosurgery is to establish safe and reliable surgical techniques. Medical technology has advanced during the 21st century, enabling the development of increasingly sophisticated tools for preoperative study that can be used by surgeons before performing surgery on an actual patient. Laser-printed models are a robust tool for improving surgical performance, planning an operative approach, and developing the skills and strategy to deal with uncommon and high-risk intraoperative difficulties. Practice with these models enhances the surgeon’s understanding of 3D anatomy but has some limitations with regard to tactile perception. In this study, the authors aimed to develop a preoperative planning method that combines a hybrid model with augmented reality (AR) to enhance preparation for and planning of a specific surgical procedure, correction of metopic craniosynostosis, also known as trigonocephaly.


With the use of imaging data of an actual case patient who underwent surgical correction of metopic craniosynostosis, a physical hybrid model (for hands-on applications) and an AR app for a mobile device were created. The hybrid customized model was developed by using analysis of diagnostic CT imaging of a case patient with metopic craniosynostosis. Created from many different types of silicone, the physical model simulates anatomical conditions, allowing a multidisciplinary team to deal with different situations and to precisely determine the appropriate surgical approach. A real-time AR interface with the physical model was developed by using an AR app that enhances the anatomic aspects of the patient’s skull. This method was used by 38 experienced surgeons (craniofacial plastic surgeons and neurosurgeons), who then responded to a questionnaire that evaluated the realism and utility of the hybrid AR simulation used in this method as a beneficial educational tool for teaching and preoperative planning in performing surgical metopic craniosynostosis correction.


The authors developed a practice model for planning the surgical cranial remodeling used in the correction of metopic craniosynostosis. In the hybrid AR model, all aspects of the surgical procedure previously performed on the case patient were simulated: subcutaneous and subperiosteal dissection, skin incision, and skull remodeling with absorbable miniplates. The pre- and postoperative procedures were also carried out, which emphasizes the role of the AR app in the hybrid model. On the basis of the questionnaire, the hybrid AR tool was approved by the senior surgery team and considered adequate for educational purposes. Statistical analysis of the questionnaire responses also highlighted the potential for the use of the hybrid model in future applications.


This new preoperative platform that combines physical and virtual models may represent an important method to improve multidisciplinary discussion in addition to being a powerful teaching tool. The hybrid model associated with the AR app provided an effective training environment, and it enhanced the teaching of surgical anatomy and operative strategies in a challenging neurosurgical procedure.

Restricted access


Rebecca A. Reynolds and John C. Wellons III