Transforaminal lumbar interbody fusion subsidence: computed tomography analysis of incidence, associated risk factors, and impact on outcomes

Hannah A. Levy Departments of Orthopedic Surgery and

Search for other papers by Hannah A. Levy in
jns
Google Scholar
PubMed
Close
 MD
,
Zachariah W. Pinter Departments of Orthopedic Surgery and

Search for other papers by Zachariah W. Pinter in
jns
Google Scholar
PubMed
Close
 MD
,
Ryder Reed Departments of Orthopedic Surgery and

Search for other papers by Ryder Reed in
jns
Google Scholar
PubMed
Close
 MD
,
Joshua R. Harmer Departments of Orthopedic Surgery and

Search for other papers by Joshua R. Harmer in
jns
Google Scholar
PubMed
Close
 MD
,
Kay Raftery Department of Bioengineering, Imperial College, London, United Kingdom; and

Search for other papers by Kay Raftery in
jns
Google Scholar
PubMed
Close
 MS
,
Karim Rizwan Nathani Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;

Search for other papers by Karim Rizwan Nathani in
jns
Google Scholar
PubMed
Close
 MBBS
,
Konstantinos Katsos Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;

Search for other papers by Konstantinos Katsos in
jns
Google Scholar
PubMed
Close
 MBBS
,
Mohamad Bydon Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;

Search for other papers by Mohamad Bydon in
jns
Google Scholar
PubMed
Close
 MD
,
Jeremy L. Fogelson Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;

Search for other papers by Jeremy L. Fogelson in
jns
Google Scholar
PubMed
Close
 MD
,
Benjamin D. Elder Neurologic Surgery, Mayo Clinic, Rochester, Minnesota;

Search for other papers by Benjamin D. Elder in
jns
Google Scholar
PubMed
Close
 MD, PhD
,
Bradford L. Currier Departments of Orthopedic Surgery and

Search for other papers by Bradford L. Currier in
jns
Google Scholar
PubMed
Close
 MD
,
Nicolas Newell Department of Bioengineering, Imperial College, London, United Kingdom; and

Search for other papers by Nicolas Newell in
jns
Google Scholar
PubMed
Close
 PhD
,
Ahmad N. Nassr Departments of Orthopedic Surgery and

Search for other papers by Ahmad N. Nassr in
jns
Google Scholar
PubMed
Close
 MD
,
Brett A. Freedman Departments of Orthopedic Surgery and

Search for other papers by Brett A. Freedman in
jns
Google Scholar
PubMed
Close
 MD
,
Brian A. Karamian Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah

Search for other papers by Brian A. Karamian in
jns
Google Scholar
PubMed
Close
 MD
, and
Arjun S. Sebastian Departments of Orthopedic Surgery and

Search for other papers by Arjun S. Sebastian in
jns
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $392.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $392.00
USD  $636.00
Print or Print + Online Sign in

OBJECTIVE

The aims of this study were to 1) define the incidence of transforaminal lumbar interbody fusion (TLIF) interbody subsidence; 2) determine the relative importance of preoperative and intraoperative patient- and instrumentation-specific risk factors predictive of postoperative subsidence using CT-based assessment; and 3) determine the impact of TLIF subsidence on postoperative complications and fusion rates.

METHODS

All adult patients who underwent one- or two-level TLIF for lumbar degenerative conditions at a multi-institutional academic center between 2017 and 2019 were retrospectively identified. Patients with traumatic injury, infection, malignancy, previous fusion at the index level, combined anterior-posterior procedures, surgery with greater than two TLIF levels, or incomplete follow-up were excluded. Interbody subsidence at the superior and inferior endplates of each TLIF level was directly measured on the endplate-facing surface of both coronal and sagittal CT scans obtained greater than 6 months postoperatively. Patients were grouped based on the maximum subsidence at each operative level classified as mild, moderate, or severe based on previously documented < 2-mm, 2- to 4-mm, and ≥ 4-mm thresholds, respectively. Univariate and regression analyses compared patient demographics, medical comorbidities, preoperative bone quality, surgical factors including interbody cage parameters, and fusion and complication rates across subsidence groups.

RESULTS

A total of 67 patients with 85 unique fusion levels met the inclusion and exclusion criteria. Overall, 28% of levels exhibited moderate subsidence and 35% showed severe subsidence after TLIF with no significant difference in the superior and inferior endplate subsidence. Moderate (≥ 2-mm) and severe (≥ 4-mm) subsidence were significantly associated with decreases in cage surface area and Taillard index as well as interbody cages with polyetheretherketone (PEEK) material and sawtooth surface geometry. Severe subsidence was also significantly associated with taller preoperative disc spaces, decreased vertebral Hounsfield units (HU), the absence of bone morphogenetic protein (BMP) use, and smooth cage surfaces. Regression analysis revealed decreases in Taillard index, cage surface area, and HU, and the absence of BMP use predicted subsidence. Severe subsidence was found to be a predictor of pseudarthrosis but was not significantly associated with revision surgery.

CONCLUSIONS

Patient-level risk factors for TLIF subsidence included decreased HU and increased preoperative disc height. Intraoperative risk factors for TLIF subsidence were decreased cage surface area, PEEK cage material, bullet cages, posterior cage positioning, smooth cage surfaces, and sawtooth surface designs. Severe subsidence predicted TLIF pseudarthrosis; however, the causality of this relationship remains unclear.

ABBREVIATIONS

BMD = bone mineral density; BMP = bone morphogenetic protein; HU = Hounsfield units; LLIF = lateral lumbar interbody fusion; PEEK = polyetheretherketone; TLIF = transforaminal lumbar interbody fusion.
  • Collapse
  • Expand
  • 1

    Fingar KR, Stocks C, Weiss AJ, Steiner CA. Most Frequent Operating Room Procedures Performed in U.S. Hospitals, 2003-2012. Statistical Brief #186. Agency for Healthcare Research and Quality; 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Zdeblick TA, Phillips FM. Interbody cage devices. Spine (Phila Pa 1976). 2003;28(15 Suppl):S2-S7.

  • 3

    Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Levy HA, Karamian BA, Yalla GR, Canseco JA, Vaccaro AR, Kepler CK. Impact of surface roughness and bulk porosity on spinal interbody implants. J Biomed Mater Res B Appl Biomater. 2023;111(2):478489.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Tung KK, Tseng WC, Wu YC, et al. Comparison of radiographic and clinical outcomes between ALIF, OLIF, and TLIF over 2-year follow-up: a comparative study. J Orthop Surg Res. 2023;18(1):158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Parisien A, Wai EK, ElSayed MSA, Frei H. Subsidence of spinal fusion cages: a systematic review. Int J Spine Surg. 2022;16(6):11031118.

  • 7

    Pinter ZW, Reed R, Townsley SE, et al. Titanium cervical cage subsidence: postoperative computed tomography analysis defining incidence and associated risk factors. Glob Spine J. 2023;13(7):17031715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Katsuura A, Hukuda S, Saruhashi Y, Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J. 2001;10(4):320324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Tempel ZJ, McDowell MM, Panczykowski DM, et al. Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg Spine. 2018;28(1):5056.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    D’Antonio ND, Lambrechts MJ, Heard JC, et al. Is disc height loss at 1 year predictive of pseudarthrosis and patient-reported outcome measures following anterior cervical discectomy and fusion with structural allograft? J Neurosurg Spine. 2023;38(5):540546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Pinter ZW, Mikula A, Shirley M, et al. Allograft subsidence decreases postoperative segmental lordosis with minimal effect on global alignment following ACDF. Global Spine J. 2022;12(8):17231730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. J Spinal Disord Tech. 2013;26(2):8792.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Soliman MAR, Aguirre AO, Kuo CC, et al. Vertebral bone quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2022;22(12):20172023.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Chen Q, Ai Y, Huang Y, et al. MRI-based Endplate Bone Quality score independently predicts cage subsidence following transforaminal lumbar interbody fusion. Spine J. 2023;23(11):16521658.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Yao YC, Chou PH, Lin HH, Wang ST, Liu CL, Chang MC. Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2020;45(19):E1279E1285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Xie F, Yang Z, Tu Z, et al. The value of Hounsfield units in predicting cage subsidence after transforaminal lumbar interbody fusion. BMC Musculoskelet Disord. 2022;23(1):882.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Yamagata T, Takami T, Uda T, et al. Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: cage subsidence and cervical alignment. J Clin Neurosci. 2012;19(12):16731678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Pinter ZW, Mikula A, Shirley M, et al. Risk factors for allograft subsidence following anterior cervical discectomy and fusion. World Neurosurg. 2023;170:e700e711.

  • 19

    Pisano AJ, Fredericks DR, Steelman T, Riccio C, Helgeson MD, Wagner SC. Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence. Neurosurg Focus. 2020;49(2):E9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Singhatanadgige W, Sukthuayat A, Tanaviriyachai T, et al. Risk factors for polyetheretherketone cage subsidence following minimally invasive transforaminal lumbar interbody fusion. Acta Neurochir (Wien). 2021;163(9):25572565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Yao YC, Chao H, Kao KY, et al. CT Hounsfield unit is a reliable parameter for screws loosening or cages subsidence in minimally invasive transforaminal lumbar interbody fusion. Sci Rep. 2023;13(1):1620.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Wang Z, Ma R, Cai Z, Wang Z, Yang S, Ge Z. Biomechanical evaluation of stand-alone oblique lateral lumbar interbody fusion under 3 different bone mineral density conditions: a finite element analysis. World Neurosurg. 2021;155:e285e293.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Nan C, Ma Z, Liu Y, Ma L, Li J, Zhang W. Impact of cage position on biomechanical performance of stand-alone lateral lumbar interbody fusion: a finite element analysis. BMC Musculoskelet Disord. 2022;23(1):920.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Salzmann SN, Okano I, Jones C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion. Spine J. 2022;22(8):13011308.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Jones C, Okano I, Arzani A, et al. The predictive value of a novel site-specific MRI-based bone quality assessment, endplate bone quality (EBQ), for severe cage subsidence among patients undergoing standalone lateral lumbar interbody fusion. Spine J. 2022;22(11):18751883.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Amorim-Barbosa T, Pereira C, Catelas D, et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion. Eur J Orthop Surg Traumatol. 2022;32(7):12911299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Zavras AG, Federico V, Nolte MT, et al. Risk factors for subsidence following anterior lumbar interbody fusion. Glob Spine J. 2024;14(1):257264.

  • 28

    Gregson CL, Hardcastle SA, Cooper C, Tobias JH. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology (Oxford). 2013;52(6):968985.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    He L, Xiang Q, Yang Y, Tsai TY, Yu Y, Cheng L. The anterior and traverse cage can provide optimal biomechanical performance for both traditional and percutaneous endoscopic transforaminal lumbar interbody fusion. Comput Biol Med. 2021;131:104291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Calvo-Echenique A, Cegoñino J, Chueca R, Pérez-Del Palomar A. Stand-alone lumbar cage subsidence: a biomechanical sensitivity study of cage design and placement. Comput Methods Programs Biomed. 2018;162:211219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Wu J, Feng Q, Yang D, et al. Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis. BMC Musculoskelet Disord. 2023;24(1):85.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Sebaaly A, Kreichati G, Tarchichi J, Kharrat K, Daher M. Transforaminal lumbar interbody fusion using banana-shaped and straight cages: meta-analysis of clinical and radiological outcomes. Eur Spine J. 2023;32(9):31583166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Levy HA, Yalla GR, Karamian BA, Vaccaro AR. Impact of porosity on interbody cage implants: PEEK and titanium. Contemp Spine Surg. 2021;22(11):17.

  • 34

    Park PJ, Lehman RA. Optimizing the spinal interbody implant: current advances in material modification and surface treatment technologies. Curr Rev Musculoskelet Med. 2020;13(6):688695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Makino T, Takenaka S, Sakai Y, Yoshikawa H, Kaito T. Comparison of short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3D porous titanium alloy cage and a titanium-coated PEEK cage. Global Spine J. 2022;12(5):931939.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Makino T, Takaneka S, Sakai Y, Yoshikawa H, Kaito T. Impact of mechanical stability on the progress of bone ongrowth on the frame surfaces of a titanium-coated PEEK cage and a 3D porous titanium alloy cage: in vivo analysis using CT color mapping. Eur Spine J. 2021;30(5):13031313.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Enders JJ, Coughlin D, Mroz TE, Vira S. Surface technologies in spinal fusion. Neurosurg Clin N Am. 2020;31(1):5764.

  • 38

    Torstrick FB, Evans NT, Stevens HY, Gall K, Guldberg RE. Do surface porosity and pore size influence mechanical properties and cellular response to PEEK? Clin Orthop Relat Res. 2016;474(11):23732383.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Gittens RA, Olivares-Navarrete R, McLachlan T, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials. 2012;33(35):89868994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater. 2014;10(8):33633371.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Fogel G, Martin N, Williams GM, et al. Choice of spinal interbody fusion cage material and design influences subsidence and osseointegration performance. World Neurosurg. 2022;162:e626e634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Fogel G, Martin N, Lynch K, et al. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis. Spine J. 2022;22(6):10281037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Campbell PG, Cavanaugh DA, Nunley P, et al. PEEK versus titanium cages in lateral lumbar interbody fusion: a comparative analysis of subsidence. Neurosurg Focus. 2020;49(3):E10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Adl Amini D, Okano I, Oezel L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage. Eur Spine J. 2021;30(8):23772384.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397425.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 317 317 317
Full Text Views 44 44 44
PDF Downloads 57 57 57
EPUB Downloads 0 0 0