Efficacy and safety of oblique posterior endplate resection for wider decompression (trumpet-shaped decompression) during anterior cervical discectomy and fusion

Dong-Ho Lee MD, PhD1, Suk-Kyu Lee MD2, Jae Hwan Cho MD, PhD1, Chang Ju Hwang MD, PhD1, Choon Sung Lee MD, PhD1, Jae Jun Yang MD, PhD3, Kook Jong Kim MD4, Jae Hong Park MD5, and Sehan Park MD3
View More View Less
  • 1 Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea;
  • | 2 Department of Orthopedic Surgery, Asan Bone Hospital, Jeju-si, Republic of Korea;
  • | 3 Department of Orthopedic Surgery, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea;
  • | 4 Department of Orthopedic Surgery, Chungbuk National University Hospital, Chungcheongbuk-do, Cheongju-si, Republic of Korea; and
  • | 5 Department of Orthopedic Surgery, Asan Bone Hospital, Seoul, Republic of Korea
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $376.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Anterior cervical discectomy and fusion (ACDF) provides a limited workspace, and surgeons often need to access the posterior aspect of the vertebral body to achieve sufficient decompression. Oblique resection of the posterior endplate (trumpet-shaped decompression [TSD]) widens the workspace, enabling removal of lesions behind the vertebral body. This study was conducted to evaluate the efficacy and safety of oblique posterior endplate resection for wider decompression.

METHODS

In this retrospective study, 227 patients who underwent ACDF for the treatment of cervical myelopathy or radiculopathy caused by spondylosis or ossification of the posterior longitudinal ligament and were followed up for ≥ 1 year were included. Patient characteristics, fusion rates, subsidence, and patient-reported outcome measures, including the neck pain visual analog scale (VAS) score, arm pain VAS score, and Neck Disability Index (NDI), were assessed. Patients who underwent TSD during ACDF (TSD group) and those who underwent surgery without TSD (non-TSD group) were compared.

RESULTS

Fifty-seven patients (25.1%) were included in the TSD group and 170 patients (74.9%) in the non-TSD group. In the TSD group, 28.2% ± 5.5% of the endplate was resected, and 26.0% ± 6.1% of the region behind the vertebral body could be visualized via the TSD technique. The resection angle was 26.9° ± 5.9°. The fusion rate assessed on the basis of interspinous motion, intragraft bone bridging, and extragraft bone bridging did not significantly differ between the two groups. Furthermore, there were no significant intergroup differences in subsidence. The patient-reported outcome measures at the 1-year follow-up were also not significantly different between the groups.

CONCLUSIONS

TSD widened the workspace during ACDF, and 26% of the region posterior to the vertebral body could be accessed using this technique. The construct stability was not adversely affected by TSD as demonstrated by the similar fusion and subsidence rates among patients who underwent TSD and those who did not. Therefore, TSD can be safely applied during ACDF when compressive lesions extend behind the vertebral body and are not limited to the disc space, enabling adequate decompression without disrupting the construct stability.

ABBREVIATIONS

ACCF = anterior cervical corpectomy and fusion; ACDF = anterior cervical discectomy and fusion; ExGBB = extragraft bone bridging; InGBB = intragraft bone bridging; ISM = interspinous motion; NDI = Neck Disability Index; OPLL = ossification of the posterior longitudinal ligament; TSD = trumpet-shaped decompression; VAS = visual analog scale.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $376.00
USD  $612.00
  • 1

    Choi SH, Kang CN. Degenerative cervical myelopathy: pathophysiology and current treatment strategies. Asian Spine J. 2020;14(5):710720.

  • 2

    Park S, Lee DH, Hwang S, et al. Feasibility of local bone dust as a graft material in anterior cervical discectomy and fusion. J Neurosurg Spine. 2019;31(4):480485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Niedzielak TR, Palmer J, Malloy JP IV. Clinical comparison of surgical constructs for anterior cervical corpectomy and fusion in patients with cervical spondylotic myelopathy or ossified posterior longitudinal ligament: a systematic review and meta-analysis. Clin Spine Surg. 2018;31(6):247260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Matz PG, Holly LT, Groff MW, et al. Indications for anterior cervical decompression for the treatment of cervical degenerative radiculopathy. J Neurosurg Spine. 2009;11(2):174182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Lee DH, Cho JH, Baik JM, et al. Does additional uncinate resection increase pseudarthrosis following anterior cervical discectomy and fusion? Spine (Phila Pa 1976). 2018;43(2):97104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Epstein NE. A review of complication rates for anterior cervical diskectomy and fusion (ACDF). Surg Neurol Int. 2019;10:100.

  • 7

    Kang KC, Lee HS, Lee JH. Cervical radiculopathy focus on characteristics and differential diagnosis. Asian Spine J. 2020;14(6):921930.

  • 8

    Lei T, Wang H, Tong T, Ma Q, Wang L, Shen Y. Enlarged anterior cervical diskectomy and fusion in the treatment of severe localised ossification of the posterior longitudinal ligament. J Orthop Surg Res. 2016;11(1):129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Epstein NE. Cervical surgery for ossification of the posterior longitudinal ligament: one spine surgeon’s perspective. Surg Neurol Int. 2014;5(suppl 3):S88S92.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Edwards CC II, Heller JG, Murakami H. Corpectomy versus laminoplasty for multilevel cervical myelopathy: an independent matched-cohort analysis. Spine (Phila Pa 1976). 2002;27(11):11681175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Sasso RC, Ruggiero RA Jr, Reilly TM, Hall PV. Early reconstruction failures after multilevel cervical corpectomy. Spine (Phila Pa 1976). 2003;28(2):140142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Hee HT, Majd ME, Holt RT, Whitecloud TS III, Pienkowski D. Complications of multilevel cervical corpectomies and reconstruction with titanium cages and anterior plating. J Spinal Disord Tech. 2003;16(1):19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Lee DH, Park S, Hong CG, et al. Fusion and subsidence rates of vertebral body sliding osteotomy: comparison of 3 reconstructive techniques for multilevel cervical myelopathy. Spine J. 2021;21(7):10891098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Zhang Y, Liu H, Yang H, Pi B. Anterior cervical corpectomy and fusion versus discectomy and fusion for the treatment of two-level cervical spondylotic myelopathy: analysis of sagittal balance and axial symptoms. Int Orthop. 2018;42(8):18771882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Arima H, Naito K, Yamagata T, Kawahara S, Ohata K, Takami T. Anterior and posterior segmental decompression and fusion for severely localized ossification of the posterior longitudinal ligament of the cervical spine: technical note. Neurol Med Chir (Tokyo). 2019;59(6):238245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Kim K, Isu T, Daijiro M, et al. Long-term results after cervical anterior fusion using an autologous bone graft (Williams-Isu method). World Neurosurg. 2014;82(1-2):219224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Tumialan LM. Minimally Invasive Spine Surgery: A Primer. Thieme;2020.

  • 18

    Li M, Zhang T, Zhang H, Zhang R, Li H, Gou X. Comparison of clinical efficacy between retention and removal of the vertebral bony endplate in anterior cervical discectomy and fusion for the treatment of cervical spondylotic myelopathy. J Orthop Sci. Published online December 9,2021. doi:10.1016/j.jos.2021.10.020

    • Search Google Scholar
    • Export Citation
  • 19

    Lin M, Paul R, Shapiro SZ, et al. Biomechanical study of cervical endplate removal on subsidence and migration in multilevel anterior cervical discectomy and fusion. Asian Spine J. 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Kim GU, Chang MC, Kim TU, Lee GW. Diagnostic modality in spine disease: a review. Asian Spine J. 2020;14(6):910920.

  • 21

    Song KS, Piyaskulkaew C, Chuntarapas T, et al. Dynamic radiographic criteria for detecting pseudarthrosis following anterior cervical arthrodesis. J Bone Joint Surg Am. 2014;96(7):557563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Song KS, Chaiwat P, Kim HJ, Mesfin A, Park SM, Riew KD. Anterior cervical fusion assessment using reconstructed computed tomographic scans: surgical confirmation of 254 segments. Spine (Phila Pa 1976). 2013;38(25):21712177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Lee CH, Kim KJ, Hyun SJ, Yeom JS, Jahng TA, Kim HJ. Subsidence as of 12 months after single-level anterior cervical inter-body fusion. Is it related to clinical outcomes?. Acta Neurochir (Wien). 2015;157(6):10631068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    van Jonbergen HP, Spruit M, Anderson PG, Pavlov PW. Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J. 2005;5(6):645649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Gercek E, Arlet V, Delisle J, Marchesi D. Subsidence of stand-alone cervical cages in anterior interbody fusion: warning. Eur Spine J. 2003;12(5):513516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Yee TJ, Swong K, Park P. Complications of anterior cervical spine surgery: a systematic review of the literature. J Spine Surg. 2020;6(1):302322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Wang T, Tian XM, Liu SK, Wang H, Zhang YZ, Ding WY. Prevalence of complications after surgery in treatment for cervical compressive myelopathy: a meta-analysis for last decade. Medicine (Baltimore). 2017;96(12):e6421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Wang X, Chen D, Yuan W, Zhang Y, Xiao J, Zhao J. Anterior surgery in selective patients with massive ossification of posterior longitudinal ligament of cervical spine: technical note. Eur Spine J. 2012;21(2):314321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Iwasaki M, Okuda S, Miyauchi A, et al. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 2: advantages of anterior decompression and fusion over laminoplasty. Spine (Phila Pa 1976). 2007;32(6):654660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Iwasaki M, Okuda S, Miyauchi A, et al. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: part 1: clinical results and limitations of laminoplasty. Spine (Phila Pa 1976). 2007;32(6):647653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Lee DH, Park S, Hong CG, et al. Significance of vertebral body sliding osteotomy as a surgical strategy for the treatment of cervical ossification of the posterior longitudinal ligament. Global Spine J. 2022;12(6):10741083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Chen Y, Chen D, Wang X, et al. Anterior corpectomy and fusion for severe ossification of posterior longitudinal ligament in the cervical spine. Int Orthop. 2009;33(2):477482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Lee DH, Cho JH, Lee CS, Hwang CJ, Choi SH, Hong CG. A novel anterior decompression technique (vertebral body sliding osteotomy) for ossification of posterior longitudinal ligament of the cervical spine. Spine J. 2018;18(6):10991105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Barsa P, Suchomel P. Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J. 2007;16(9):13951400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Yang JJ, Park S, Kim HJ, Yoon JY. Segmental height decrease adversely affects foraminal height and cervical lordosis, but not clinical outcome after anterior cervical discectomy and fusion using allografts. World Neurosurg. 2021;154:e555e565.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 336 337 336
Full Text Views 52 52 52
PDF Downloads 48 48 48
EPUB Downloads 0 0 0