Subtle segmental angle changes of single-level lumbar fusions and adjacent-level biomechanics: cadaveric study of optically measured disc strain

View More View Less
  • 1 Spinal Biomechanics Laboratory, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
  • | 2 Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Changes to segmental lordosis at a single level may affect adjacent-level biomechanics and overall spinal alignment with an iatrogenic domino effect commonly seen in adult spinal deformity. This study investigated the effects of different segmental angles of single-level lumbar fixation on stability and principal strain across the surface of the adjacent-level disc.

METHODS

Seven human cadaveric L3–S1 specimens were instrumented at L4–5 and tested in 3 conditions: 1) neutral native angle ("neutral"), 2) increasing angle by 5° of lordosis ("lordosis"), and 3) decreasing angle by 5° of kyphosis ("kyphosis"). Pure moment loads (7.5 Nm) were applied in flexion, extension, lateral bending, and axial rotation, followed by 400 N of axial compression alone and together with pure moments. Range of motion (ROM), principal maximum strain (E1), and principal minimum strain (E2) across different surface subregions of the upper adjacent-level disc (L3–4) were optically assessed. Larger magnitudes of either E1 or E2 indicate larger tissue deformations and represent indirect measures of increased stress.

RESULTS

At the superior adjacent level, a significant increase in ROM was observed in kyphosis and lordosis versus neutral in flexion (p ≤ 0.001) and extension (p ≤ 0.02). ROM was increased in lordosis versus neutral (p = 0.03) and kyphosis (p = 0.004) during compression. ROM increased in kyphosis versus neutral and lordosis (both p = 0.03) in compression plus extension. Lordosis resulted in increased E1 across the midposterior subregion of the disc (Q3) versus neutral during right lateral bending (p = 0.04); lordosis and kyphosis resulted in decreased E1 in Q3 versus neutral with compression (p ≤ 0.03). Lordosis decreased E1 in Q3 versus neutral during compression plus flexion (p = 0.01), whereas kyphosis increased E1 in all quartiles and increased E2 in the midanterior subregion versus lordosis in compression plus flexion (p ≤ 0.047). Kyphosis decreased E1 in Q3 (p = 0.02) and E2 in the anterior-most subregion of the disc (Q1) (p = 0.006) versus neutral, whereas lordosis decreased E1 in Q3 (p = 0.008) versus neutral in compression plus extension.

CONCLUSIONS

Lumbar spine monosegmental fixation with 5° offset from the neutral individual segmental angle altered the motion and principal strain magnitudes at the upper adjacent disc, with induced kyphosis resulting in larger principal strains compared with lordosis. Segmental alignment of single-level fusion influences adjacent-segment biomechanics, and suboptimal alignment may play a role in the clinical development of adjacent-segment disease.

ABBREVIATIONS

ASD = adjacent-segment degeneration; DIC = digital image correlation; E1 = principal maximum strain; E2 = principal minimum strain; Q1 = anterior-most subregion of the disc; Q2 = midanterior subregion of the disc; Q3 = midposterior subregion of the disc; Q4 = posterior-most subregion of the disc; ROM = range of motion.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976). 2005;30(6):682688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J. 2011;20(suppl 5):609618.

  • 3

    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976). 2005;30(3):346353.

    • Search Google Scholar
    • Export Citation
  • 4

    Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J. 2011;20(suppl 5):564571.

  • 5

    Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S. Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J. 2011;20(suppl 5):699703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Vaz G, Roussouly P, Berthonnaud E, Dimnet J. Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J. 2002;11(1):8087.

  • 7

    Bae JS, Lee SH, Kim JS, Jung B, Choi G. Adjacent segment degeneration after lumbar interbody fusion with percutaneous pedicle screw fixation for adult low-grade isthmic spondylolisthesis: minimum 3 years of follow-up. Neurosurgery. 2010;67(6):16001608.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Djurasovic MO, Carreon LY, Glassman SD, Dimar JR II, Puno RM, Johnson JR. Sagittal alignment as a risk factor for adjacent level degeneration: a case-control study. Orthopedics. 2008;31(6):546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Park MS, Kelly MP, Lee DH, Min WK, Rahman RK, Riew KD. Sagittal alignment as a predictor of clinical adjacent segment pathology requiring surgery after anterior cervical arthrodesis. Spine J. 2014;14(7):12281234.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Phan K, Nazareth A, Hussain AK, et al. Relationship between sagittal balance and adjacent segment disease in surgical treatment of degenerative lumbar spine disease: meta-analysis and implications for choice of fusion technique. Eur Spine J. 2018;27(8):19811991.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Zheng G, Wang C, Wang T, et al. Relationship between postoperative lordosis distribution index and adjacent segment disease following L4-S1 posterior lumbar interbody fusion. J Orthop Surg Res. 2020;15(1):129.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Yee TJ, Joseph JR, Terman SW, Park P. Expandable vs static cages in transforaminal lumbar interbody fusion: Radiographic comparison of segmental and lumbar sagittal angles. Neurosurgery. 2017;81(1):6974.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Cheng X, Zhang F, Zhang K, et al. Effect of single-level transforaminal lumbar interbody fusion on segmental and overall lumbar lordosis in patients with lumbar degenerative disease. World Neurosurg. 2018;109:e244e251.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Saadeh YS, Joseph JR, Smith BW, Kirsch MJ, Sabbagh AM, Park P. Comparison of segmental lordosis and global spinopelvic alignment after single-level lateral lumbar interbody fusion or transforaminal lumbar interbody fusion. World Neurosurg. 2019;126:e1374e1378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Uribe JS, Myhre SL, Youssef JA. Preservation or restoration of segmental and regional spinal lordosis using minimally invasive interbody fusion techniques in degenerative lumbar conditions: a literature review. Spine (Phila Pa 1976). 2016;41(suppl 8):S50S58.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Miyazaki M, Ishihara T, Abe T, et al. Effect of intraoperative position in single-level transforaminal lumbar interbody fusion at the L4/5 level on segmental and overall lumbar lordosis in patients with lumbar degenerative disease. Medicine (Baltimore). 2019;98(39):e17316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Lovecchio FC, Vaishnav AS, Steinhaus ME, et al. Does interbody cage lordosis impact actual segmental lordosis achieved in minimally invasive lumbar spine fusion?. Neurosurg Focus. 2020;49(3):E17.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Panjabi MM. Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976). 1988;13(10):11291134.

    • Search Google Scholar
    • Export Citation
  • 19

    Kelly BP, Bennett CR. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5). J Biomech. 2013;46(11):19481954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Crawford NR, Dickman CA. Construction of local vertebral coordinate systems using a digitizing probe. Technical note. Spine (Phila Pa 1976). 1997;22(5):559563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Crawford NR, Yamaguchi GT, Dickman CA. A new technique for determining 3-D joint angles: the tilt/twist method. Clin Biomech. (Bristol, Avon). 1999;14(3):153165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Potter BK, Lenke LG, Kuklo TR. Prevention and management of iatrogenic flatback deformity. J Bone Joint Surg Am. 2004;86(8):17931808.

  • 23

    Kettler A, Wilke HJ, Haid C, Claes L. Effects of specimen length on the monosegmental motion behavior of the lumbar spine. Spine (Phila Pa 1976). 2000;25(5):543550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Dickey JP, Kerr DJ. Effect of specimen length: are the mechanics of individual motion segments comparable in functional spinal units and multisegment specimens?. Med Eng Phys. 2003;25(3):221227.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Ruspi ML, Palanca M, Faldini C, Cristofolini L. Full-field in vitro investigation of hard and soft tissue strain in the spine by means of Digital Image Correlation. Muscles Ligaments Tendons J. 2018;7(4):538545.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Gustafson H, Siegmund G, Cripton P. Comparison of strain rosettes and digital image correlation for measuring vertebral body strain. J Biomech Eng. 2016;138(5):054501.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Palanca M, Brugo TM, Cristofolini L. Use of digital image correlation to investigate the biomechanics of the vertebra. J Mech Med Biol. 2015;15(02):1540004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Oda I, Cunningham BW, Buckley RA, et al. Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine (Phila Pa 1976). 1999;24(20):21392146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Menezes-Reis R, Bonugli GP, Dalto VF, da Silva Herrero CFP, Defino HLA, Nogueira-Barbosa MH. Association between lumbar spine sagittal alignment and l4-l5 disc degeneration among asymptomatic young adults. Spine (Phila Pa 1976). 2016;41(18):E1081E1087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Zhao X, Du L, Xie Y, Zhao J. Effect of lumbar lordosis on the adjacent segment in transforaminal lumbar interbody fusion: a finite element analysis. World Neurosurg. 2018;114:e114e120.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Umehara S, Zindrick MR, Patwardhan AG, et al. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine (Phila Pa 1976). 2000;25(13):16171624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Molz FJ, Kirkpatrick JS, Reza Moeini SM, Partin JI, Bidez MW. Effects of kyphosis and lordosis on the remaining lumbar vertebral levels within a thoracolumbar fusion: an experimental study of the multisegmental human spine. J South Orthop Assoc. 1999;8(4):261268.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1254 1254 1254
Full Text Views 48 48 48
PDF Downloads 66 66 66
EPUB Downloads 0 0 0