Alternatives to DEXA for the assessment of bone density: a systematic review of the literature and future recommendations

Nachiket DeshpandeDepartment of Neurosurgery, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Nachiket Deshpande in
jns
Google Scholar
PubMed
Close
 BS
,
Moustafa S. HadiDepartment of Neurosurgery, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Moustafa S. Hadi in
jns
Google Scholar
PubMed
Close
 BS
,
Jock C. LillardDepartment of Neurosurgery, Semmes-Murphey Neurologic and Spine Institute, University of Tennessee, Memphis, Tennessee; and

Search for other papers by Jock C. Lillard in
jns
Google Scholar
PubMed
Close
 MD
,
Peter G. PassiasDepartment of Orthopedic Surgery, Langone Orthopedic Hospital, New York, New York

Search for other papers by Peter G. Passias in
jns
Google Scholar
PubMed
Close
 MD
,
Joseph R. LinzeyDepartment of Neurosurgery, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Joseph R. Linzey in
jns
Google Scholar
PubMed
Close
 MD, MS
,
Yamaan S. SaadehDepartment of Neurosurgery, University of Michigan, Ann Arbor, Michigan;

Search for other papers by Yamaan S. Saadeh in
jns
Google Scholar
PubMed
Close
 MD
,
Michael LaBagnaraDepartment of Neurosurgery, Semmes-Murphey Neurologic and Spine Institute, University of Tennessee, Memphis, Tennessee; and

Search for other papers by Michael LaBagnara in
jns
Google Scholar
PubMed
Close
 MD
, and
Paul ParkDepartment of Neurosurgery, Semmes-Murphey Neurologic and Spine Institute, University of Tennessee, Memphis, Tennessee; and

Search for other papers by Paul Park in
jns
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Osteoporosis has significant implications in spine fusion surgery, for which reduced spinal bone mineral density (BMD) can result in complications and poorer outcomes. Currently, dual-energy x-ray absorptiometry (DEXA) is the gold standard for radiographic diagnosis of osteoporosis, although DEXA accuracy may be limited by the presence of degenerative spinal pathology. In recent years, there has been an evolving interest in using alternative imaging, including CT and MRI, to assess BMD. In this systematic review of the literature, the authors assessed the use and effectiveness of MRI, opportunistic CT (oCT), and quantitative CT (qCT) to measure BMD.

METHODS

In accordance with the PRISMA guidelines, the authors conducted a systematic search for articles posted on PubMed between the years 2000 and 2022 by using the keywords "opportunistic CT, quantitative CT, MRI" AND "bone density" AND "spine." Inclusion criteria consisted of articles written in English that reported studies pertaining to human or cadaveric subjects, and studies including a measure of spinal BMD. Articles not related to spinal BMD, osteoporosis, or spinal surgery or reports of studies that did not include the use of spinal MRI or CT were excluded. Key study outcomes were extracted from included articles, and qualitative analysis was subsequently performed.

RESULTS

The literature search yielded 302 articles. Forty-two articles reported studies that met the final inclusion criteria. Eighteen studies utilized MRI protocols to correlate spinal BMD with vertebral bone quality scores, M-scores, and quantitative perfusion markers. Eight studies correlated oCT with spinal BMD, and 16 studies correlated qCT with spinal BMD. With oCT and qCT imaging, there was consensus that Hounsfield unit (HU) values > 160 demonstrated significant reduction in risk of osteoporosis, whereas HU values < 110 were significantly correlated with osteoporosis.

CONCLUSIONS

Osteoporosis is increasingly recognized as a significant risk factor for complications after spinal fusion surgery. Consequently, preoperative assessment of BMD is a critical factor to consider in planning surgical treatment. Although DEXA has been the gold standard for BMD measurement, other imaging modalities, including MRI, oCT, and qCT, appear to be viable alternatives and may offer cost and time savings.

ABBREVIATIONS

AUC = area under the curve; BMD = bone mineral density; DEXA = dual-energy x-ray absorptiometry; EES = extravascular extracellular space; HU = Hounsfield unit; Kep = exchange rate of contrast agent between plasma and the EES gap; Ktrans = volume of capillary permeability–surface area per minute; oCT = opportunistic CT; qCT = quantitative CT; SNR = signal-to-noise ratio; VBQ = vertebral bone quality; Ve = volume of EES per unit of volume of tissue.
  • Collapse
  • Expand
  • 1

    Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J. 2020;19:10171037.

    • Search Google Scholar
    • Export Citation
  • 3

    Rand T, Seidl G, Kainberger F, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int. 1997;60(5):430433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Pappou IP, Girardi FP, Sandhu HS, et al. Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine (Phila Pa 1976). 2006;31(14):16141620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien). 2016;158(7):14211427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Zou D, Li W, Deng C, Du G, Xu N. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J. 2019;28(8):17581766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Aynaszyan S, Devia LG, Udoeyo IF, Badve SA, DelSole EM. Patient physiology influences the MRI-based vertebral bone quality score. Spine J. 2022;22(11):18661874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Bandirali M, Di Leo G, Papini GD, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol. 2015;25(10):29512959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Chang HK, Hsu TW, Ku J, et al. Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease. J Neurosurg Spine. 2022;36(3):414421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Ehresman J, Pennington Z, Schilling A, et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J. 2020;20(4):556562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Gokalp G, Mutlu FS, Yazici Z, Yildirim N. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis. Skeletal Radiol. 2011;40(5):577585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    He J, Fang H, Na Li X. Vertebral bone marrow diffusivity in normal adults with varying bone densities at 3T diffusion-weighted imaging. Acta Radiol. 2018;59(1):8996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    He L, Liu Z, Liu C, et al. Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis. Acad Radiol. 2021;28(6):e165e171.

  • 15

    Hu YH, Yeh YC, Niu CC, et al. Novel MRI-based vertebral bone quality score as a predictor of cage subsidence following transforaminal lumbar interbody fusion. J Neurosurg Spine. 2022;37(5):654662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Huang Z, Lin Q, Wang J, Zhan Z, Tu X. Relationship between quantitative parameters of lumbar vertebral perfusion and bone mineral density (BMD) in postmenopausal women. Adv Clin Exp Med. 2019;28(8):10051011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Kale H, Yadav S. Can routine MRI spine T1 sequences be used for prediction of decreased bone density? Acta Radiol. Published online January 6, 2022. doi: 10.1177/02841851211063008

    • Search Google Scholar
    • Export Citation
  • 18

    Kühn JP, Hernando D, Meffert PJ, et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol. 2013;23(12):34323439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Leonhardt Y, Gassert FT, Feuerriegel G, et al. Vertebral bone marrow T2* mapping using chemical shift encoding-based water-fat separation in the quantitative analysis of lumbar osteoporosis and osteoporotic fractures. Quant Imaging Med Surg. 2021;11(8):37153725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Maris TG, Damilakis J, Sideri L, et al. Assessment of the skeletal status by MR relaxometry techniques of the lumbar spine: comparison with dual X-ray absorptiometry. Eur J Radiol. 2004;50(3):245256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Momeni M, Asadzadeh M, Mowla K, Hanafi MG, Gharibvand MM, Sahraeizadeh A. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients. Radiol Med (Torino). 2020;125(1):6874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Salzmann SN, Okano I, Jones C, et al. Preoperative MRI-based vertebral bone quality (VBQ) score assessment in patients undergoing lumbar spinal fusion. Spine J. 2022;22(8):13011308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Shayganfar A, Khodayi M, Ebrahimian S, Tabrizi Z. Quantitative diagnosis of osteoporosis using lumbar spine signal intensity in magnetic resonance imaging. Br J Radiol. 2019;92(1097):20180774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Tang GY, Lv ZW, Tang RB, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol. 2010;65(5):377381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Zhao Y, Huang M, Serrano Sosa M, et al. Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos. 2019;14(1):99.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Shah LM, Hanrahan CJ. MRI of spinal bone marrow: part I, techniques and normal age-related appearances. AJR Am J Roentgenol. 2011;197(6):12981308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Bandaru S, Hare K, Krueger D, Binkley N. Do patients that fracture with normal DXA-measured BMD have normal bone? Arch Osteoporos. 2020;15(1):70.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Bettag C, Abboud T, von der Brelie C, Melich P, Rohde V, Schatlo B. Do we underdiagnose osteoporosis in patients with pyogenic spondylodiscitis? Neurosurg Focus. 2020;49(2):E16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Cohen A, Foldes AJ, Hiller N, Simanovsky N, Szalat A. Opportunistic screening for osteoporosis and osteopenia by routine computed tomography scan: a heterogeneous, multiethnic, middle-eastern population validation study. Eur J Radiol. 2021;136:109568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Emohare O, Cagan A, Morgan R, et al. The use of computed tomography attenuation to evaluate osteoporosis following acute fractures of the thoracic and lumbar vertebra. Geriatr Orthop Surg Rehabil. 2014;5(2):5055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Emohare O, Dittmer A, Morgan RA, Switzer JA, Polly DW Jr. Osteoporosis in acute fractures of the cervical spine: the role of opportunistic CT screening. J Neurosurg Spine. 2015;23(1):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Lee SJ, Binkley N, Lubner MG, Bruce RJ, Ziemlewicz TJ, Pickhardt PJ. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int. 2016;27(3):11311136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Michalski AS, Besler BA, Burt LA, Boyd SK. Opportunistic CT screening predicts individuals at risk of major osteoporotic fracture. Osteoporos Int. 2021;32(8):16391649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Xi Z, Mummaneni PV, Wang M, et al. The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. Neurosurg Focus. 2020;49(2):E8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Carlson BB, Salzmann SN, Shirahata T, et al. Prevalence of osteoporosis and osteopenia diagnosed using quantitative CT in 296 consecutive lumbar fusion patients. Neurosurg Focus. 2020;49(2):E5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Cheng X, Li K, Zhang Y, et al. The accurate relationship between spine bone density and bone marrow in humans. Bone. 2020;134:115312.

  • 37

    Czyz M, Kapinas A, Holton J, Pyzik R, Boszczyk BM, Quraishi NA. The computed tomography-based fractal analysis of trabecular bone structure may help in detecting decreased quality of bone before urgent spinal procedures. Spine J. 2017;17(8):11561162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Fuerderer S, Vonhoegen J, Coenen O, Michael J, Koebke J, Eysel P. In vitro comparison of the pullout strength of 3 anterior double-screw fixation techniques with different screw angulations. J Neurosurg Spine. 2011;14(3):367371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Giambini H, Salman Roghani R, Thoreson AR, Melton LJ III, An KN, Gay RE. Lumbar trabecular bone mineral density distribution in patients with and without vertebral fractures: a case-control study. Eur Spine J. 2014;23(6):13461353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Kay FU, Ho V, Dosunmu EB, et al. Quantitative CT detects undiagnosed low bone mineral density in oncologic patients imaged with 18F-FDG PET/CT. Clin Nucl Med. 2021;46(1):815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Kim K, Song SH, Kim IJ, Jeon YK. Is dual-energy absorptiometry accurate in the assessment of bone status of patients with chronic kidney disease? Osteoporos Int. 2021;32(9):18591868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Kinsella S, Murphy K, Breen M, et al. Comparison of single CT scan assessment of bone mineral density, vascular calcification and fat mass with standard clinical measurements in renal transplant subjects: the ABC HeART study. BMC Nephrol. 2015;16:188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Löffler MT, Jacob A, Scharr A, et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol. 2021;31(8):60696077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Löffler MT, Jacob A, Valentinitsch A, et al. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol. 2019;29(9):49804989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Narloch J, Glinkowski W. Software-assisted morphometry and volumetry of the lumbar spine. Neurol Neurochir Pol. 2016;50(3):143150.

  • 46

    Okano I, Salzmann SN, Jones C, et al. The impact of degenerative disc disease on regional volumetric bone mineral density (vBMD) measured by quantitative computed tomography. Spine J. 2020;20(2):181190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Paxinos O, Tsitsopoulos PP, Zindrick MR, et al. Evaluation of pullout strength and failure mechanism of posterior instrumentation in normal and osteopenic thoracic vertebrae. J Neurosurg Spine. 2010;13(4):469476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Smith A, Khan M, Varney E, et al. Opportunistic bone density screening for the abdominal radiologist using colored CT images: a pilot retrospective study. Abdom Radiol (NY). 2019;44(2):775782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Therkildsen J, Winther S, Nissen L, et al. Feasibility of opportunistic screening for low thoracic bone mineral density in patients referred for routine cardiac CT. J Clin Densitom. 2020;23(1):117127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Ullrich BW, Schwarz F, McLean AL, et al. Inter-rater reliability of Hounsfield units as a measure of bone density: applications in the treatment of thoracolumbar fractures. World Neurosurg. 2022;158:e711e716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Wagner SC, Formby PM, Helgeson MD, Kang DG. Diagnosing the undiagnosed: osteoporosis in patients undergoing lumbar fusion. Spine (Phila Pa 1976). 2016;41(21):E1279E1283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    ACR-SPR-SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (QCT). American College of Radiology. Accessed November 23, 2022. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf

    • Search Google Scholar
    • Export Citation
  • 53

    Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25(2):619626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Goel H, Libber J, Borchardt G, Krueger D, Binkley N. A pilot study comparing daily teriparatide with monthly cycles of teriparatide and raloxifene. Arch Osteoporos. 2021;16(1):70.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 844 844 798
Full Text Views 242 242 215
PDF Downloads 163 163 144
EPUB Downloads 0 0 0