3D-printed vertebral body for anterior spinal reconstruction in patients with thoracolumbar spinal tumors

Hua Zhou MD1,2,3, Shanshan Liu MD1,2,3, Zhehuang Li MD4, Xiaoguang Liu MD1,2,3, Lei Dang MD1,2,3, Yan Li MD1,2,3, Zihe Li MD1,2,3, Panpan Hu MD1,2,3, Ben Wang MD1,2,3, Feng Wei MD1,2,3, and Zhongjun Liu MD1,2,3
View More View Less
  • 1 Department of Orthopaedics, Peking University Third Hospital, Beijing;
  • | 2 Engineering Research Center of Bone and Joint Precision Medicine, Beijing;
  • | 3 Beijing Key Laboratory of Spinal Disease Research, Beijing; and
  • | 4 Department of Bone and Soft Tumor, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

A 3D-printed vertebral prosthesis can be used to reconstruct a bone defect more precisely because of its tailored shape, with its innermost porous structure inducing bone ingrowth. The aim of this study was to evaluate the clinical outcomes of using a 3D-printed artificial vertebral body for spinal reconstruction after en bloc resection of thoracolumbar tumors.

METHODS

This was a retrospective analysis of 23 consecutive patients who underwent surgical treatment for thoracolumbar tumors at our hospital. En bloc resection was performed in all cases, based on the Weinstein-Boriani-Biagini surgical staging system, and anterior reconstruction was performed using a 3D-printed artificial vertebral body. Prosthesis subsidence, fusion status, and instrumentation-related complications were evaluated. Stability of the anterior reconstruction method was evaluated by CT, and CT Hounsfield unit (HU) values were measured to evaluate fusion status.

RESULTS

The median follow-up was 37 (range 24–58) months. A customized 3D-printed artificial vertebral body was used in 10 patients, with an off-the-shelf 3D-printed artificial vertebral body used in the other 13 patients. The artificial vertebral body was implanted anteriorly in 5 patients and posteriorly in 18 patients. The overall fusion rate was 87.0%. The average prosthesis subsidence at the final follow-up was 1.60 ± 1.79 mm. Instrument failure occurred in 2 patients, both of whom had substantial subsidence (8.47 and 3.69 mm, respectively). At 3 months, 6 months, and 1 year postoperatively, the mean CT HU values within the artificial vertebral body were 1930 ± 294, 1997 ± 336, and 1994 ± 257, respectively, with each of these values being significantly higher than the immediate postoperative value of 1744 ± 321 (p < 0.05).

CONCLUSIONS

The use of a 3D-printed artificial vertebral body for anterior reconstruction after en bloc resection of the thoracolumbar spinal tumor may be a feasible and reliable option. The low incidence of prosthesis subsidence of 3D-printed endoprostheses can provide good stability instantly. Measurement of HU values with CT is a valuable method to evaluate the osseointegration at the bone-metal interface of a 3D-printed vertebral prosthesis.

ABBREVIATIONS

AVB = artificial vertebral body; HU = Hounsfield unit; WBB = Weinstein-Boriani-Biagini.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Kato S, Murakami H, Demura S, et al. More than 10-year follow-up after total en bloc spondylectomy for spinal tumors. Ann Surg Oncol. 2014;21(4):13301336.

  • 2

    Luzzati AD, Shah S, Gagliano F, Perrucchini G, Scotto G, Alloisio M. Multilevel en bloc spondylectomy for tumors of the thoracic and lumbar spine is challenging but rewarding. Clin Orthop Relat Res. 2015;473(3):858867.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Mesfin A, El Dafrawy MH, Jain A, Hassanzadeh H, Kebaish KM. Total en bloc spondylectomy for primary and metastatic spine tumors. Orthopedics. 2015;38(11):e995e1000.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Yoshioka K, Murakami H, Demura S, et al. Clinical outcome of spinal reconstruction after total en bloc spondylectomy at 3 or more levels. Spine (Phila Pa 1976).2013;38(24):E1511E1516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Cloyd JM, Acosta FL Jr, Polley MY, Ames CP. En bloc resection for primary and metastatic tumors of the spine: a systematic review of the literature. Neurosurgery. 2010;67(2):435445.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Sciubba DM, De la Garza Ramos R, Goodwin CR, et al. Total en bloc spondylectomy for locally aggressive and primary malignant tumors of the lumbar spine. Eur Spine J. 2016;25(12):40804087.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Matsumoto M, Watanabe K, Tsuji T, et al. Late instrumentation failure after total en bloc spondylectomy. J Neurosurg Spine. 2011;15(3):320327.

  • 8

    Boriani S, Bandiera S, Donthineni R, et al. Morbidity of en bloc resections in the spine. Eur Spine J. 2010;19(2):231241.

  • 9

    Yanamadala V, Rozman PA, Kumar JI, et al. Vascularized fibular strut autografts in spinal reconstruction after resection of vertebral chordoma or chondrosarcoma: a retrospective series. Neurosurgery. 2017;81(1):156164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Glennie RA, Rampersaud YR, Boriani S, et al. A systematic review with consensus expert opinion of best reconstructive techniques after osseous en bloc spinal column tumor resection. Spine (Phila Pa 1976). 2016;41(suppl 20):S205S211.

    • Search Google Scholar
    • Export Citation
  • 11

    Park SJ, Lee CS, Chang BS, et al. Rod fracture and related factors after total en bloc spondylectomy. Spine J. 2019;19(10):16131619.

  • 12

    Boriani S. En bloc resection in the spine: a procedure of surgical oncology. J Spine Surg. 2018;4(3):668676.

  • 13

    Bridwell KH, Lenke LG, McEnery KW, Baldus C, Blanke K. Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine. (Phila Pa 1976). 1995;20(12):14101418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Girolami M, Boriani S, Bandiera S, et al. Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors: preliminary results on a case-series of 13 patients. Eur Spine J. 2018;27(12):30733083.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE III. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg. 2017;105:1032.e131032.e17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976). 2016;41(1):E50E54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Wei R, Guo W, Yang R, et al. Reconstruction of the pelvic ring after total en bloc sacrectomy using a 3D-printed sacral endoprosthesis with re-establishment of spinopelvic stability: a retrospective comparative study. Bone Joint J. 2019;101-B(7):880888.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Dvorak MF, Kwon BK, Fisher CG, Eiserloh HL III, Boyd M, Wing PC. Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection. Spine (Phila Pa 1976). 2003;28(9):902908.

    • Search Google Scholar
    • Export Citation
  • 19

    Boriani S, Tedesco G, Ming L, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J. 2018;27(4):874881.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Viswanathan A, Abd-El-Barr MM, Doppenberg E, et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J. 2012;21(1):8492.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Schulze M, Gosheger G, Bockholt S, et al. Complex bone tumors of the trunk-the role of 3D printing and navigation in tumor orthopedics: a case series and review of the literature. J Pers Med. 2021;11(6):517.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Lador R, Regev G, Salame K, Khashan M, Lidar Z. Use of 3-dimensional printing technology in complex spine surgeries. World Neurosurg. 2020;133:e327e341.

  • 23

    Parr WCH, Burnard JL, Singh T, McEvoy A, Walsh WR, Mobbs RJ. C3-C5 chordoma resection and reconstruction with a three-dimensional printed titanium patient-specific implant. World Neurosurg. 2020;136:226233.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Li X, Wang Y, Zhao Y, Liu J, Xiao S, Mao K. Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma. Spine (Phila Pa 1976). 2017;42(22):E1326E1330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    He S, Ye C, Zhong N, Yang M, Yang X, Xiao J. Customized anterior craniocervical reconstruction via a modified high-cervical retropharyngeal approach following resection of a spinal tumor involving C1-2/C1-3. J Neurosurg Spine. 2020;32(3):432440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Chin BZ, Ji T, Tang X, Yang R, Guo W. Three-level lumbar en bloc spondylectomy with three-dimensional-printed vertebrae reconstruction for recurrent giant cell tumor. World Neurosurg. 2019;129:531537.e1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Elder BD, Ishida W, Goodwin CR, et al. Bone graft options for spinal fusion following resection of spinal column tumors: systematic review and meta-analysis. Neurosurg Focus. 2017;42(1):E16.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Li Z, Wei F, Liu Z, et al. Risk factors for instrumentation failure after total en bloc spondylectomy of thoracic and lumbar spine tumors using titanium mesh cage for anterior reconstruction. World Neurosurg. 2020;135:e106e115.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Zhang T, Wei Q, Zhou H, et al. Three-dimensional-printed individualized porous implants: a new "implant-bone" interface fusion concept for large bone defect treatment. Bioact Mater. 2021;6(11):36593670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Yang J, Cai H, Lv J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine (Phila Pa 1976). 2014;39(8):E486E492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):1796417975.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Wei F, Li Z, Liu Z, et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Med. 2020;8(6):332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 522 522 49
Full Text Views 116 116 15
PDF Downloads 80 80 14
EPUB Downloads 0 0 0