A critical reappraisal of corticospinal tract somatotopy and its role in traumatic cervical spinal cord syndromes

Allan D. Levi MD, PhD1 and Jan M. Schwab MD, PhD2
View More View Less
  • 1 The Miami Project to Cure Paralysis, and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; and
  • | 2 Belford Center for Spinal Cord Injury, The Ohio State Neurological Institute, Department of Neurology, The Ohio State University, Columbus, Ohio
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

The corticospinal tract (CST) is the preeminent voluntary motor pathway that controls human movements. Consequently, long-standing interest has focused on CST location and function in order to understand both loss and recovery of neurological function after incomplete cervical spinal cord injury, such as traumatic central cord syndrome. The hallmark clinical finding is paresis of the hands and upper-extremity function with retention of lower-extremity movements, which has been attributed to injury and the sparing of specific CST fibers. In contrast to historical concepts that proposed somatotopic (laminar) CST organization, the current narrative summarizes the accumulated evidence that 1) there is no somatotopic organization of the corticospinal tract within the spinal cord in humans and 2) the CST is critically important for hand function. The evidence includes data from 1) tract-tracing studies of the central nervous system and in vivo MRI studies of both humans and nonhuman primates, 2) selective ablative studies of the CST in primates, 3) evolutionary assessments of the CST in mammals, and 4) neuropathological examinations of patients after incomplete cervical spinal cord injury involving the CST and prominent arm and hand dysfunction. Acute traumatic central cord syndrome is characterized by prominent upper-extremity dysfunction, which has been falsely predicated on pinpoint injury to an assumed CST layer that specifically innervates the hand muscles. Given the evidence surveyed herein, the pathophysiological mechanism is most likely related to diffuse injury to the CST that plays a critically important role in hand function.

ABBREVIATIONS

BCP = Bell’s cruciate paralysis; CCS = central cord syndrome; CP = cerebral peduncle; CR = corona radiata; CST = corticospinal tract; CVJ = craniovertebral junction; PLIC = posterior limb of the internal capsule; SCI = spinal cord injury.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Sherrington C. The spinal cord. In: Schäfer E, ed. Textbook of Physiology.Vol 2. YJ Pentland;1900:783883.

  • 2

    Nathan PW, Smith MC. Long descending tracts in man. I. Review of present knowledge. Brain. 1955;78(2):248303.

  • 3

    Standring S, ed.Gray’s Anatomy—The Anatomical Basis of Clinical Practice. 41st ed. Elsevier; 2016:291308.

  • 4

    Greenberg M. Greenberg Handbook of Neurosurgery. 9th ed. Thieme;2019:93.

  • 5

    Ropper A, Samuels M, Klein J, Prasad S. Adams and Victor’s Principles of Neurology. 11th ed. McGraw-Hill Education;2019:145.

  • 6

    Levi AD, Tator CH, Bunge RP. Clinical syndromes associated with disproportionate weakness of the upper versus the lower extremities after cervical spinal cord injury. Neurosurgery. 1996;38(1):179185.

    • Search Google Scholar
    • Export Citation
  • 7

    Jane JA, Yashon D, DeMyer W, Bucy PC. The contribution of the precentral gyrus to the pyramidal tract of man. J Neurosurg. 1967;26(2):244248.

    • Search Google Scholar
    • Export Citation
  • 8

    Lassek A, Rasmussen G. A comparative fiber and numerical analysis of the pyramidal tract. J Comp Neurol. 1940;72(2):417428.

  • 9

    Bortoff GA, Strick PL. Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci. 1993;13(12):51055118.

    • Search Google Scholar
    • Export Citation
  • 10

    Davidoff RA. The pyramidal tract. Neurology. 1990;40(2):332339.

  • 11

    Penfield W, Boldrey E. Somatotopic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389443.

    • Search Google Scholar
    • Export Citation
  • 12

    Park JK, Kim BS, Choi G, Kim SH, Choi JC, Khang H. Evaluation of the somatotopic organization of corticospinal tracts in the internal capsule and cerebral peduncle: results of diffusion-tensor MR tractography. Korean J Radiol. 2008;9(3):191195.

    • Search Google Scholar
    • Export Citation
  • 13

    Hazzaa NM, Mancini L, Thornton J, Yousry TA. Somatotopic organization of corticospinal/corticobulbar motor tracts in controls and patients with tumours: a combined fMRI-DTI study. Neuroimage Clin. 2019;23:101910.

    • Search Google Scholar
    • Export Citation
  • 14

    Marx JJ, Iannetti GD, Thömke F, Fitzek S, Urban PP, Stoeter P, et al. Somatotopic organization of the corticospinal tract in the human brainstem: a MRI-based mapping analysis. Ann Neurol. 2005;57(6):824831.

    • Search Google Scholar
    • Export Citation
  • 15

    Kwon HG, Yang JH, Park JB, Kim MH, Choi SH, Yang DS. Anatomical location and somatotopic organization of the corticospinal tract in the corona radiata of the normal human brain: a diffusion tensor tractography study. Neuroreport. 2014;25(9):710714.

    • Search Google Scholar
    • Export Citation
  • 16

    Holodny AI, Gor DM, Watts R, Gutin PH, Ulug AM. Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology. 2005;234(3):649653.

    • Search Google Scholar
    • Export Citation
  • 17

    Song YM. Somatotopic organization of motor fibers in the corona radiata in monoparetic patients with small subcortical infarct. Stroke. 2007;38(8):23532355.

    • Search Google Scholar
    • Export Citation
  • 18

    Lee DH, Lee DW, Han BS. Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography. Eur Radiol. 2016;26(6):17511759.

    • Search Google Scholar
    • Export Citation
  • 19

    Yoshiura T, Kumazawa S, Noguchi T, Hiwatashi A, Togao O, Yamashita K, et al. MR tractography based on directional diffusion function validation in somatotopic organization of the pyramidal tract. Acad Radiol. 2008;15(2):186192.

    • Search Google Scholar
    • Export Citation
  • 20

    Barnard JW, Woolsey CN. A study of localization in the cortico-spinal tracts of monkey and rat. J Comp Neurol. 1956;105(1):2550.

  • 21

    Coxe WS, Landau WM. Patterns of Marchi degeneration in the monkey pyramidal tract following small discrete cortical lesions. Neurology. 1970;20(1):89100.

    • Search Google Scholar
    • Export Citation
  • 22

    Liu CN, Chambers WW. An experimental study of the cortico-spinal system in the monkey (Macaca mulatta). The spinal pathways and preterminal distribution of degenerating fibers following discrete lesions of the pre- and postcentral gyri and bulbar pyramid. J Comp Neurol. 1964;123:257283.

    • Search Google Scholar
    • Export Citation
  • 23

    Pappas CT, Gibson AR, Sonntag VK. Decussation of hind-limb and fore-limb fibers in the monkey corticospinal tract: relevance to cruciate paralysis. J Neurosurg. 1991;75(6):935940.

    • Search Google Scholar
    • Export Citation
  • 24

    Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113(Pt 2):303324.

    • Search Google Scholar
    • Export Citation
  • 25

    Verstynen T, Jarbo K, Pathak S, Schneider W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol. 2011;105(1):336346.

    • Search Google Scholar
    • Export Citation
  • 26

    Heffner R, Masterton B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol. 1975;12(3):161200.

    • Search Google Scholar
    • Export Citation
  • 27

    Kuypers H. Anatomy of the descending pathways. In: Brookhart J, Mountcastle V, eds. Handbook of Physiology. Section 1: The Nervous System. Vol II. Motor control, parts 1 and 2.American Physiological Society;1981:597666.

    • Search Google Scholar
    • Export Citation
  • 28

    Phillips C, Porter R. Corticospinal Neurones: Their Role in Movement. Vol 34. Academic Press;1977:vxii.

  • 29

    Romer A. The Vertebrate Body. 3rd ed. WB Saunders Co;1962:550627.

  • 30

    Nyberg-Hansen R, Rinvik E. Some comments on the pyramidal tract with special reference to its individual variations in man. Acta Neurol Scand. 1963;39(1):130.

    • Search Google Scholar
    • Export Citation
  • 31

    Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med. 2007;13(5):561566.

    • Search Google Scholar
    • Export Citation
  • 32

    Tower S. Pyramidal lesion in the monkey. Brain. 1940;63(1):3690.

  • 33

    Lawrence DG, Kuypers HG. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain. 1968;91(1):1536.

    • Search Google Scholar
    • Export Citation
  • 34

    Schwartzman RJ. A behavioral analysis of complete unilateral section of the pyramidal tract at the medullary level in Macaca mulatta. Ann Neurol. 1978;4(3):234244.

    • Search Google Scholar
    • Export Citation
  • 35

    Bucy PC. Is there a pyramidal tract? Brain. 1957;80(3):376392.

  • 36

    Hepp-Reymond, Trouche E, Wiesendanger M. Effects of unilateral and bilateral pyramidotomy on a conditioned rapid precision grip in monkeys (Macaca fascicularis). Exp Brain Res. 1974;21(5):519527.

    • Search Google Scholar
    • Export Citation
  • 37

    Bucy PC, Ladpli R, Ehrlich A. Destruction of the pyramidal tract in the monkey. The effects of bilateral section of the cerebral peduncles. J Neurosurg. 1966;25(1):123.

    • Search Google Scholar
    • Export Citation
  • 38

    Nathan PW. Effects on movement of surgical incisions into the human spinal cord. Brain. 1994;117(Pt 2):337346.

  • 39

    Schneider R, McGillicuddy J. Concomitant craniocerebral and spinal trauma with special reference to the cervicomedullary region. In: Vinken PJ, Bruyn GW, eds. Injuries of the Brain and Skull, Part II. Handbook of Clinical Neurology.Vol 24. North Holland Publishing Company;1976:141177.

    • Search Google Scholar
    • Export Citation
  • 40

    Schneider RC, Crosby EC, Russo RH, Gosch HH. Chapter 32. Traumatic spinal cord syndromes and their management. Clin Neurosurg. 1973;20:424492.

    • Search Google Scholar
    • Export Citation
  • 41

    Bell HS. Paralysis of both arms from injury of the upper portion of the pyramidal decussation: “cruciate paralysis”. J Neurosurg. 1970;33(4):376380.

    • Search Google Scholar
    • Export Citation
  • 42

    Bell H. Cruciate paralysis. In: Vinken PJ, Bruyn GW, eds. Injuries of the Spine and Spinal Cord. Handbook of Clinical Neurology. Vol 25. North Holland Publishing Company;1976:391392.

    • Search Google Scholar
    • Export Citation
  • 43

    Dickman CA, Hadley MN, Pappas CT, Sonntag VK, Geisler FH. Cruciate paralysis: a clinical and radiographic analysis of injuries to the cervicomedullary junction. J Neurosurg. 1990;73(6):850858.

    • Search Google Scholar
    • Export Citation
  • 44

    Dumitru D, Lang JE. Cruciate paralysis. Case report. J Neurosurg. 1986;65(1):108110.

  • 45

    Marano SR, Calica AB, Sonntag VK. Bilateral upper extremity paralysis (Bell’s cruciate paralysis) from a gunshot wound to the cervicomedullary junction. Neurosurgery. 1986;18(5):642644.

    • Search Google Scholar
    • Export Citation
  • 46

    Wallenberg A. Anatomischer Befund in einem als “acute bulbärraffection (embolie der Art. cerebellar post. inf. sinsistr?)” beschrieben Falle. Arch Psychiatr. 1901;34:923959.

    • Search Google Scholar
    • Export Citation
  • 47

    Crosby EC, Humphrey T, Lauer E. Correlative Anatomy of the Nervous System. McMillan Company; 1962.

  • 48

    DeJong R. The Neurological Examination, Incorporating the Fundamentals of Neuroanatomy and Neurophysiology. 2nd ed. Hoeber-Harper; 1958.

    • Search Google Scholar
    • Export Citation
  • 49

    Schneider RC, Cherry G, Pantek H. The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg. 1954;11(6):546577.

    • Search Google Scholar
    • Export Citation
  • 50

    Schneider RC, Thompson JM, Bebin J. The syndrome of acute central cervical spinal cord injury. J Neurol Neurosurg Psychiatry. 1958;21(3):216227.

    • Search Google Scholar
    • Export Citation
  • 51

    Foerster O. Symptomatologie der Erkrankungen des Rückenmarks und seiner Wurzeln. In: Handbuch der Neurologie.Vol 5. Springer;1936:1403.

    • Search Google Scholar
    • Export Citation
  • 52

    Quencer RM, Bunge RP, Egnor M, Green BA, Puckett W, Naidich TP, et al. Acute traumatic central cord syndrome: MRI-pathological correlations. Neuroradiology. 1992;34(2):8594.

    • Search Google Scholar
    • Export Citation
  • 53

    Bunge R, Puckett W, Becerra J, Marcillo A, Quencer R. Observations on the Pathology of Human Spinal Cord Injury. Raven Press;1993.

  • 54

    Napier J. The evolution of the hand. Sci Am. 1962;207(6):5662.

Metrics

All Time Past Year Past 30 Days
Abstract Views 304 304 304
Full Text Views 82 82 82
PDF Downloads 117 117 117
EPUB Downloads 0 0 0