Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease

View More View Less
  • 1 Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan;
  • | 2 College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan;
  • | 3 Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan;
  • | 4 Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan;
  • | 5 Integrated PET/MR Imaging Center, Taipei Veterans General Hospital, Taipei, Taiwan;
  • | 6 University of California, Los Angeles, California; and
  • | 7 Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Good bone quality is the key to avoiding osteoporotic fragility fractures and poor outcomes after lumbar instrumentation and fusion surgery. Although dual-energy x-ray absorptiometry (DEXA) screening is the current standard for evaluating osteoporosis, many patients lack DEXA measurements before undergoing lumbar spine surgery. The present study aimed to investigate the utility of using simple quantitative parameters generated with novel synthetic MRI to evaluate bone quality, as well as the correlations of these parameters with DEXA measurements.

METHODS

This prospective study enrolled patients with symptomatic lumbar degenerative disease who underwent DEXA and conventional and synthetic MRI. The quantitative parameters generated with synthetic MRI were T1 map, T2 map, T1 intensity, proton density (PD), and vertebral bone quality (VBQ) score, and these parameters were correlated with T-score of the lumbar spine.

RESULTS

There were 62 patients and 238 lumbar segments eligible for analysis. PD and VBQ score moderately correlated with T-score of the lumbar spine (r = −0.565 and −0.651, respectively; both p < 0.001). T1 intensity correlated fairly well with T-score (r = −0.411, p < 0.001). T1 and T2 correlated poorly with T-score. Receiver operating characteristic curve analysis demonstrated area under the curve values of 0.808 and 0.794 for detecting osteopenia/osteoporosis (T-score ≤ −1.0) and osteoporosis (T-score ≤ −2.5) with PD (both p < 0.001).

CONCLUSIONS

PD and T1 intensity values generated with synthetic MRI demonstrated significant correlation with T-score. PD has excellent ability for predicting osteoporosis and osteopenia.

ABBREVIATIONS

AUC = area under the curve; BMD = bone mineral density; DEXA = dual-energy x-ray absorptiometry; MAGiC = Magnetic Resonance Image Compilation; PD = proton density; ROC = receiver operating characteristic; VBQ = vertebral bone quality.

Spine - 1 year subscription bundle (Individuals Only)

USD  $376.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine (Phila Pa 1976).2001;26(8):951956.

    • Search Google Scholar
    • Export Citation
  • 2

    Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech. 2004;17(4):306311.

    • Search Google Scholar
    • Export Citation
  • 3

    Park SB, Chung CK. Strategies of spinal fusion on osteoporotic spine. J Korean Neurosurg Soc. 2011;49(6):317322.

  • 4

    Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):12541259.

    • Search Google Scholar
    • Export Citation
  • 5

    Jain RK, Vokes T. Dual-energy X-ray absorptiometry. J Clin Densitom. 2017;20(3):291303.

  • 6

    Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J. 2009;9(7):537544.

    • Search Google Scholar
    • Export Citation
  • 7

    Ward CM, Arnold MA, Emohare O. Characterizing bone mineral density using lumbar spine computed tomography attenuation in patients with distal radius fractures. Geriatr Orthop Surg Rehabil. 2019;10:2151459319847408.

    • Search Google Scholar
    • Export Citation
  • 8

    Bandirali M, Di Leo G, Papini GDE, Messina C, Sconfienza LM, Ulivieri FM, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol. 2015;25(10):29512959.

    • Search Google Scholar
    • Export Citation
  • 9

    Ehresman J, Pennington Z, Schilling A, Lubelski D, Ahmed AK, Cottrill E, et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J. 2020;20(4):556562.

    • Search Google Scholar
    • Export Citation
  • 10

    Ehresman J, Schilling A, Yang X, Pennington Z, Ahmed AK, Cottrill E, et al. Vertebral bone quality score predicts fragility fractures independently of bone mineral density. Spine J. 2021;21(1):2027.

    • Search Google Scholar
    • Export Citation
  • 11

    Blystad I, Warntjes JBM, Smedby O, Landtblom AM, Lundberg P, Larsson EM. Synthetic MRI of the brain in a clinical setting. Acta Radiol. 2012;53(10):11581163.

    • Search Google Scholar
    • Export Citation
  • 12

    Park S, Kwack KS, Lee YJ, Gho SM, Lee HY. Initial experience with synthetic MRI of the knee at 3T: comparison with conventional T1 weighted imaging and T2 mapping. Br J Radiol. 2017;90(1080):20170350.

    • Search Google Scholar
    • Export Citation
  • 13

    Granberg T, Uppman M, Hashim F, Cananau C, Nordin LE, Shams S, et al. Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol. 2016;37(6):10231029.

    • Search Google Scholar
    • Export Citation
  • 14

    Hagiwara A, Andica C, Hori M, Aoki S. Synthetic MRI showed increased myelin partial volume in the white matter of a patient with Sturge-Weber syndrome. Neuroradiology. 2017;59(11):10651066.

    • Search Google Scholar
    • Export Citation
  • 15

    Lee SM, Choi YH, Cheon JE, Kim IO, Cho SH, Kim WH, et al. Image quality at synthetic brain magnetic resonance imaging in children. Pediatr Radiol. 2017;47(12):16381647.

    • Search Google Scholar
    • Export Citation
  • 16

    Ehresman J, Schilling A, Pennington Z, Gui C, Chen X, Lubelski D, et al. A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J Neurosurg Spine. 2020;32(4):499506.

    • Search Google Scholar
    • Export Citation
  • 17

    Meunier P. Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;(80):147154.

    • Search Google Scholar
    • Export Citation
  • 18

    Singh S, Bray TJP, Hall-Craggs MA. Quantifying bone structure, micro-architecture, and pathophysiology with MRI. Clin Radiol. 2018;73(3):221230.

    • Search Google Scholar
    • Export Citation
  • 19

    Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed. 2006;19(7):731764.

    • Search Google Scholar
    • Export Citation
  • 20

    Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010;64(3):680687.

    • Search Google Scholar
    • Export Citation
  • 21

    Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology. 2008;248(3):824833.

    • Search Google Scholar
    • Export Citation
  • 22

    Di Iorgi N, Rosol M, Mittelman SD, Gilsanz V. Reciprocal relation between marrow adiposity and the amount of bone in the axial and appendicular skeleton of young adults. J Clin Endocrinol Metab. 2008;93(6):22812286.

    • Search Google Scholar
    • Export Citation
  • 23

    Wehrli FW, Hopkins JA, Hwang SN, Song HK, Snyder PJ, Haddad JG. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry. Radiology. 2000;217(2):527538.

    • Search Google Scholar
    • Export Citation
  • 24

    Li Y, Meng Y, Yu X. The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne). 2019;10:69.

  • 25

    Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone. 2000;26(5):485489.

    • Search Google Scholar
    • Export Citation
  • 26

    Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, et al. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging. 2017;46(2):323337.

    • Search Google Scholar
    • Export Citation
  • 27

    Dempster DW. Bone microarchitecture and strength. Osteoporos Int. 2003;14(suppl 5):S54S56.

  • 28

    Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13(5):323334.

  • 29

    Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, et al. Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging. 2002;13(5):335355.

    • Search Google Scholar
    • Export Citation
  • 30

    Ashe MC, Santos IKD, Edward NY, Burnett LA, Barnes R, Fleig L, et al. Physical activity and bone health in men: a systematic review and meta-analysis. J Bone Metab. 2021;28(1):2739.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 206 206 82
Full Text Views 44 44 19
PDF Downloads 54 54 25
EPUB Downloads 0 0 0