Transthoracic microsurgical anterior decompression without fusion for ossification of the posterior longitudinal ligament in the thoracic spine

Seokjin Ko MD, Junseok Bae MD and Sang-Ho Lee MD, PhD
View More View Less
  • Department of Neurosurgery, Chungdam Wooridul Spine Hospital, Seoul, Republic of Korea
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

The authors aimed to analyze outcomes following transthoracic microsurgical anterior decompression of thoracic ossification of the posterior longitudinal ligament (T-OPLL), which was causing myelopathy, and determine the predictive factors for surgical outcomes.

METHODS

Patients who underwent transthoracic microsurgical anterior decompression without fusion for the treatment of T-OPLL from December 2014 to May 2019 were included. Demographic, radiological, and perioperative data and clinical outcomes of 35 patients were analyzed. The modified Japanese Orthopaedic Association (mJOA) score and recovery rate were used to evaluate functional outcomes.

RESULTS

A total of 35 consecutive patients (8 men and 27 women; mean age 52.2 ± 10.8 years) were enrolled in this study, and the mean follow-up period was 65.5 ± 51.9 months. The mean mJOA score significantly improved after surgery (5.9 ± 1.8 vs 8.3 ± 1.5, p < 0.001), with a mean recovery rate of 47.7% ± 24.5%. The visual analog scale (VAS) score significantly improved after surgery (7.3 ± 1.3 vs 4.3 ± 0.7, p < 0.001). The outcome was excellent in 4 patients (11.4%), good in 21 patients (60.0%), fair in 4 patients (11.4%), unchanged in 5 patients (14.3%), and worsened in 1 patient (2.9%). There were 12 cases of CSF leakage, 1 case of epidural hematoma, 1 case of pleural effusion, and 1 case of pneumothorax. Age, preoperative kyphotic angle, anteroposterior length of T-OPLL at the maximally affected level, and mass occupying rate were identified as predictors associated with postoperative outcome. A multivariate regression analysis revealed that age and preoperative kyphotic angle were independent risk factors for postoperative outcomes.

CONCLUSIONS

Transthoracic microsurgical anterior decompression without fusion achieved favorable clinical and radiological outcomes for treating T-OPLL with myelopathy. Patient age and preoperative kyphotic angle were independent risk factors for lower recovery rate.

ABBREVIATIONS mJOA = modified Japanese Orthopaedic Association; OKA = ossification-kyphosis angle; T-OPLL = thoracic ossification of the posterior longitudinal ligament; VAS = visual analog scale.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Junseok Bae: Chungdam Wooridul Spine Hospital, Seoul, Republic of Korea. jsbaemd@gmail.com.

INCLUDE WHEN CITING Published online August 21, 2020; DOI: 10.3171/2020.5.SPINE20277.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Ido K, Shimizu K, Nakayama Y, Anterior decompression and fusion for ossification of posterior longitudinal ligament in the thoracic spine. J Spinal Disord. 1995;8(4):317323.

    • Search Google Scholar
    • Export Citation
  • 2

    Kim SY, Hyun S-J, Kim K-J, Jahng T-A. Surgical outcomes according to dekyphosis in patients with ossification of the posterior longitudinal ligament in the thoracic spine. J Korean Neurosurg Soc. 2020;63(1):8998.

    • Search Google Scholar
    • Export Citation
  • 3

    Kanematsu R, Hanakita J, Takahashi T, Microsurgical resection of ossification of the posterior longitudinal ligament in the thoracic spine via the transthoracic approach without spinal fusion: case series and technical note. J Neurosurg Spine. 2019;31(3):326333.

    • Search Google Scholar
    • Export Citation
  • 4

    Kato S, Murakami H, Demura S, Indication for anterior spinal cord decompression via a posterolateral approach for the treatment of ossification of the posterior longitudinal ligament in the thoracic spine: a prospective cohort study. Eur Spine J. 2019;29(1):113121.

    • Search Google Scholar
    • Export Citation
  • 5

    Matsuyama Y, Yoshihara H, Tsuji T, Surgical outcome of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine: implication of the type of ossification and surgical options. J Spinal Disord Tech. 2005;18(6):492498.

    • Search Google Scholar
    • Export Citation
  • 6

    Min J-H, Jang J-S, Lee S-H. Clinical results of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine treated by anterior decompression. J Spinal Disord Tech. 2008;21(2):116119.

    • Search Google Scholar
    • Export Citation
  • 7

    Fujimura Y, Nishi Y, Nakamura M, Myelopathy secondary to ossification of the posterior longitudinal ligament of the thoracic spine treated by anterior decompression and bony fusion. Spinal Cord. 1997;35(11):777784.

    • Search Google Scholar
    • Export Citation
  • 8

    Fujimura Y, Nishi Y, Nakamura M, Anterior decompression and fusion for ossification of the posterior longitudinal ligament of the upper thoracic spine causing myelopathy: using the manubrium splitting approach. Spinal Cord. 1996;34(7):387393.

    • Search Google Scholar
    • Export Citation
  • 9

    Hanai K, Ogikubo O, Miyashita T. Anterior decompression for myelopathy resulting from thoracic ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 2002;27(10):10701076.

    • Search Google Scholar
    • Export Citation
  • 10

    Fujimura Y, Nishi Y, Nakamura M, Long-term follow-up study of anterior decompression and fusion for thoracic myelopathy resulting from ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 1997;22(3):305311.

    • Search Google Scholar
    • Export Citation
  • 11

    Kurosa Y, Yamaura I, Nakai O, Shinomiya K. Selecting a surgical method for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976). 1996;21(12):14581466.

    • Search Google Scholar
    • Export Citation
  • 12

    Tsuzuki N, Hirabayashi S, Abe R, Saiki K. Staged spinal cord decompression through posterior approach for thoracic myelopathy caused by ossification of posterior longitudinal ligament. Spine (Phila Pa 1976). 2001;26(14):16231630.

    • Search Google Scholar
    • Export Citation
  • 13

    Hanakita J. Microsurgery for thoracic OPLL: assessing direct visualization and safe removability of the ossified lesion. Article in Japanese. J Spine Res. 2011;2(2):244247.

    • Search Google Scholar
    • Export Citation
  • 14

    Ogawa Y, Toyama Y, Chiba K, Long-term results of expansive open-door laminoplasty for ossification of the posterior longitudinal ligament of the cervical spine. J Neurosurg Spine. 2004;1(2):168174.

    • Search Google Scholar
    • Export Citation
  • 15

    Ando K, Imagama S, Kobayashi K, Comparative study of surgical treatment and nonsurgical follow up for thoracic ossification of the posterior longitudinal ligament: radiological and clinical evaluation. Spine (Phila Pa 1976). 2017;42(6):407410.

    • Search Google Scholar
    • Export Citation
  • 16

    Hirabayashi S, Kitagawa T, Yamamoto I, Surgical treatment for ossification of the posterior longitudinal ligament (OPLL) at the thoracic spine: usefulness of the posterior approach. Spine Surg Relat Res. 2018;2(3):169176.

    • Search Google Scholar
    • Export Citation
  • 17

    Matsuyama Y, Sakai Y, Katayama Y, Indirect posterior decompression with corrective fusion for ossification of the posterior longitudinal ligament of the thoracic spine: is it possible to predict the surgical results? Eur Spine J. 2009;18(7):943948.

    • Search Google Scholar
    • Export Citation
  • 18

    Uei H, Tokuhashi Y, Oshima M, Efficacy of posterior decompression and fixation based on ossification-kyphosis angle criteria for multilevel ossification of the posterior longitudinal ligament in the thoracic spine. J Neurosurg Spine. 2018;29(2):150156.

    • Search Google Scholar
    • Export Citation
  • 19

    Tokuhashi Y, Matsuzaki H, Oda H, Uei H. Effectiveness of posterior decompression for patients with ossification of the posterior longitudinal ligament in the thoracic spine: usefulness of the ossification-kyphosis angle on MRI. Spine (Phila Pa 1976). 2006;31(1):E26E30.

    • Search Google Scholar
    • Export Citation
  • 20

    Matsumoto M, Chiba K, Toyama Y, Surgical results and related factors for ossification of posterior longitudinal ligament of the thoracic spine: a multi-institutional retrospective study. Spine (Phila Pa 1976). 2008;33(9):10341041.

    • Search Google Scholar
    • Export Citation
  • 21

    Koda M, Mochizuki M, Konishi H, Comparison of clinical outcomes between laminoplasty, posterior decompression with instrumented fusion, and anterior decompression with fusion for K-line (-) cervical ossification of the posterior longitudinal ligament. Eur Spine J. 2016;25(7):22942301.

    • Search Google Scholar
    • Export Citation
  • 22

    Sakai K, Okawa A, Takahashi M, Five-year follow-up evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine (Phila Pa 1976). 2012;37(5):367376.

    • Search Google Scholar
    • Export Citation
  • 23

    Yoshii T, Sakai K, Hirai T, Anterior decompression with fusion versus posterior decompression with fusion for massive cervical ossification of the posterior longitudinal ligament with a ³50% canal occupying ratio: a multicenter retrospective study. Spine J. 2016;16(11):13511357.

    • Search Google Scholar
    • Export Citation
  • 24

    Koda M, Furuya T, Okawa A, Mid- to long-term outcomes of posterior decompression with instrumented fusion for thoracic ossification of the posterior longitudinal ligament. J Clin Neurosci. 2016;27:8790.

    • Search Google Scholar
    • Export Citation
  • 25

    Cho JY, Chan CK, Lee S-H, Management of cerebrospinal fluid leakage after anterior decompression for ossification of posterior longitudinal ligament in the thoracic spine: the utilization of a volume-controlled pseudomeningocele. J Spinal Disord Tech. 2012;25(4):E93E102.

    • Search Google Scholar
    • Export Citation
  • 26

    Imagama S, Ando K, Ito Z, Risk factors for ineffectiveness of posterior decompression and dekyphotic corrective fusion with instrumentation for beak-type thoracic ossification of the posterior longitudinal ligament: a single institute study. Neurosurgery. 2017;80(5):800808.

    • Search Google Scholar
    • Export Citation
  • 27

    Floeth FW, Stoffels G, Herdmann J, Prognostic value of 18F-FDG PET in monosegmental stenosis and myelopathy of the cervical spinal cord. J Nucl Med. 2011;52(9):13851391.

    • Search Google Scholar
    • Export Citation
  • 28

    Furlan JC, Kalsi-Ryan S, Kailaya-Vasan A, Functional and clinical outcomes following surgical treatment in patients with cervical spondylotic myelopathy: a prospective study of 81 cases. J Neurosurg Spine. 2011;14(3):348355.

    • Search Google Scholar
    • Export Citation
  • 29

    Madhavan K, Chieng LO, Foong H, Wang MY. Surgical outcomes of elderly patients with cervical spondylotic myelopathy: a meta-analysis of studies reporting on 2868 patients. Neurosurg Focus. 2016;40(6):E13.

    • Search Google Scholar
    • Export Citation
  • 30

    Su N, Fei Q, Wang B, Long-term outcomes and prognostic analysis of modified open-door laminoplasty with lateral mass screw fusion in treatment of cervical spondylotic myelopathy. Ther Clin Risk Manag. 2016;12:13291337.

    • Search Google Scholar
    • Export Citation
  • 31

    Tetreault L, Palubiski LM, Kryshtalskyj M, Significant predictors of outcome following surgery for the treatment of degenerative cervical myelopathy: a systematic review of the literature. Neurosurg Clin N Am. 2018;29(1):115127.e35.

    • Search Google Scholar
    • Export Citation

Metrics