Strategy for obtaining solid fusion at L5–S1 in adult spinal deformity: risk factor analysis for nonunion at L5–S1

View More View Less
  • Department of Orthopedic Surgery, Graduate School, College of Medicine, Kyung Hee University, Seoul, Korea
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Maintaining lumbosacral (LS) arthrodesis and global sagittal balance after long fusion to the sacrum remains an important issue in the surgical treatment for adult spinal deformity (ASD). The importance and usefulness of LS fixation have been documented, but the optimal surgical long fusion to the sacrum remains a matter for debate. Therefore, the authors performed a retrospective study to evaluate fusion on CT scans and the risk factors for LS pseudarthrosis (nonunion) after long fusion to the sacrum in ASD.

METHODS

The authors performed a retrospective study of 59 patients with lumbar degenerative kyphosis (mean age 69.6 years) who underwent surgical correction, including an interbody fusion of the L5–S1, with a minimum 2-year follow-up. Achievement of LS fusion was evaluated by analyzing 3D-CT scans at 3 months, 6 months, 9 months, 1 year, and 2 years after surgery. Patients were classified into a union group (n = 36) and nonunion group (n = 23). Risk factors for nonunion were analyzed, including patient and surgical factors.

RESULTS

The overall fusion rate was 61% (36/59). Regarding radiological factors, optimal sagittal balance at the final follow-up significantly differed between two groups. There were no significant differences in terms of patient factors, and no significant differences with respect to the use of pedicle subtraction osteotomy, the number of fused segments, the proportion of anterior versus posterior interbody fusion, S2 alar iliac fixation versus conventional iliac fixation, or loosening of sacral or iliac screws. However, the proportion of metal cages to polyetheretherketone cages and the proportion of sacropelvic fixation were significantly higher in the union group (p = 0.022 and p < 0.05, respectively).

CONCLUSIONS

LS junction fusion is crucial for global sagittal balance, and the use of iliac screws in addition to LS interbody fusion using a metal cage improves the outcomes of long fusion surgery for ASD patients.

ABBREVIATIONS ALIF = anterior lumbar interbody fusion; ASD = adult spinal deformity; BMD = bone mineral density; BMI = body mass index; LDK = lumbar degenerative kyphosis; LL = lumbar lordosis; LS = lumbosacral; ODI = Oswestry Disability Index; PEEK = polyetheretherketone; PI = pelvic incidence; PLIF = posterior lumbar interbody fusion; PSO = pedicle subtraction osteotomy; PT = pelvic tilt; rhBMP-2 = recombinant human bone morphogenetic protein–2; SS = sacral slope; SVA = sagittal vertical axis; S2AI = S2 alar iliac; VAS = visual analog scale.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Jung-Hee Lee: Graduate School, College of Medicine, Kyung Hee University, Seoul, Korea. ljhspine@gmail.com.

INCLUDE WHEN CITING Published online April 17, 2020; DOI: 10.3171/2020.2.SPINE191181.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Schwab F, Dubey A, Gamez L, Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976). 2005;30(9):10821085.

    • Search Google Scholar
    • Export Citation
  • 2

    Farcy JP, Schwab FJ. Management of flatback and related kyphotic decompensation syndromes. Spine (Phila Pa 1976). 1997;22(20):24522457.

    • Search Google Scholar
    • Export Citation
  • 3

    Kim YJ, Bridwell KH, Lenke LG, Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976). 2006;31(20):23292336.

    • Search Google Scholar
    • Export Citation
  • 4

    Kostuik JP, Hall BB. Spinal fusions to the sacrum in adults with scoliosis. Spine (Phila Pa 1976). 1983;8(5):489500.

  • 5

    Maeda T, Buchowski JM, Kim YJ, Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine (Phila Pa 1976). 2009;34(20):22052212.

    • Search Google Scholar
    • Export Citation
  • 6

    Schwab FJ, Lafage V, Farcy JP, Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine (Phila Pa 1976). 2008;33(20):22432247.

    • Search Google Scholar
    • Export Citation
  • 7

    Kostuik JP, Valdevit A, Chang HG, Kanzaki K. Biomechanical testing of the lumbosacral spine. Spine (Phila Pa 1976). 1998;23(16):17211728.

    • Search Google Scholar
    • Export Citation
  • 8

    Kuklo TR, Bridwell KH, Lewis SJ, Minimum 2-year analysis of sacropelvic fixation and L5-S1 fusion using S1 and iliac screws. Spine (Phila Pa 1976). 2001;26(18):19761983.

    • Search Google Scholar
    • Export Citation
  • 9

    Lebwohl NH, Cunningham BW, Dmitriev A, Biomechanical comparison of lumbosacral fixation techniques in a calf spine model. Spine (Phila Pa 1976). 2002;27(21):23122320.

    • Search Google Scholar
    • Export Citation
  • 10

    Cho W, Mason JR, Smith JS, Failure of lumbopelvic fixation after long construct fusions in patients with adult spinal deformity: clinical and radiographic risk factors: clinical article. J Neurosurg Spine. 2013;19(4):445453.

    • Search Google Scholar
    • Export Citation
  • 11

    Luhmann SJ, Bridwell KH, Cheng I, Use of bone morphogenetic protein-2 for adult spinal deformity. Spine (Phila Pa 1976). 2005;30(17)(suppl):S110–S117.

    • Search Google Scholar
    • Export Citation
  • 12

    Mulconrey DS, Bridwell KH, Flynn J, Bone morphogenetic protein (rhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine (Phila Pa 1976). 2008;33(20):21532159.

    • Search Google Scholar
    • Export Citation
  • 13

    Lee CS, Kim YT, Kim E. Clinical study of lumbar degenerative kyphosis. J Korean Soc Spine Surg. 1997;4:2735.

  • 14

    Lee CS, Lee CK, Kim YT, Dynamic sagittal imbalance of the spine in degenerative flat back: significance of pelvic tilt in surgical treatment. Spine (Phila Pa 1976). 2001;26(18):20292035.

    • Search Google Scholar
    • Export Citation
  • 15

    Takemitsu Y, Harada Y, Iwahara T, Lumbar degenerative kyphosis. Clinical, radiological and epidemiological studies. Spine (Phila Pa 1976). 1988;13(11):13171326.

    • Search Google Scholar
    • Export Citation
  • 16

    Horton WC, Brown CW, Bridwell KH, Is there an optimal patient stance for obtaining a lateral 36” radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976). 2005;30(4):427433.

    • Search Google Scholar
    • Export Citation
  • 17

    Lee JH, Kim KT, Lee SH, Overcorrection of lumbar lordosis for adult spinal deformity with sagittal imbalance: comparison of radiographic outcomes between overcorrection and undercorrection. Eur Spine J. 2016;25(8):26682675.

    • Search Google Scholar
    • Export Citation
  • 18

    Smith JS, Bess S, Shaffrey CI, Dynamic changes of the pelvis and spine are key to predicting postoperative sagittal alignment after pedicle subtraction osteotomy: a critical analysis of preoperative planning techniques. Spine (Phila Pa 1976). 2012;37(10):845853.

    • Search Google Scholar
    • Export Citation
  • 19

    Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7(2):99103.

    • Search Google Scholar
    • Export Citation
  • 20

    Whang PG, Sasso RC, Patel VV, Comparison of axial and anterior interbody fusions of the L5-S1 segment: a retrospective cohort analysis. J Spinal Disord Tech. 2013;26(8):437443.

    • Search Google Scholar
    • Export Citation
  • 21

    Fischgrund JS, Mackay M, Herkowitz HN, 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976). 1997;22(24):28072812.

    • Search Google Scholar
    • Export Citation
  • 22

    Gruskay JA, Webb ML, Grauer JN. Methods of evaluating lumbar and cervical fusion. Spine J. 2014;14(3):531539.

  • 23

    Cunningham BW, Lewis SJ, Long J, Biomechanical evaluation of lumbosacral reconstruction techniques for spondylolisthesis: an in vitro porcine model. Spine (Phila Pa 1976). 2002;27(21):23212327.

    • Search Google Scholar
    • Export Citation
  • 24

    Shah RR, Mohammed S, Saifuddin A, Taylor BA. Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation. Eur Spine J. 2003;12(4):378385.

    • Search Google Scholar
    • Export Citation
  • 25

    Weiner BK, Fraser RD. Spine update lumbar interbody cages. Spine (Phila Pa 1976). 1998;23(5):634640.

  • 26

    Chong E, Pelletier MH, Mobbs RJ, Walsh WR. The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC Musculoskelet Disord. 2015;16:99.

    • Search Google Scholar
    • Export Citation
  • 27

    Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014;6(2):8189.

    • Search Google Scholar
    • Export Citation
  • 28

    Chen Y, Wang X, Lu X, Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22(7):15391546.

    • Search Google Scholar
    • Export Citation
  • 29

    Nemoto O, Asazuma T, Yato Y, Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23(10):21502155.

    • Search Google Scholar
    • Export Citation
  • 30

    Brantigan JW, Steffee AD, Lewis ML, Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976). 2000;25(11):14371446.

    • Search Google Scholar
    • Export Citation
  • 31

    Helgeson MD, Lehman RA Jr, Patzkowski JC, Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion. Spine J. 2011;11(6):507510.

    • Search Google Scholar
    • Export Citation
  • 32

    De Bartolo L, Morelli S, Bader A, Drioli E. The influence of polymeric membrane surface free energy on cell metabolic functions. J Mater Sci Mater Med. 2001;12(10-12):959963.

    • Search Google Scholar
    • Export Citation
  • 33

    Olivares-Navarrete R, Gittens RA, Schneider JM, Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. Spine J. 2012;12(3):265272.

    • Search Google Scholar
    • Export Citation
  • 34

    Schimmel JJ, Poeschmann MS, Horsting PP, PEEK cages in lumbar fusion: mid-term clinical outcome and radiologic fusion. Clin Spine Surg. 2016;29(5):E252E258.

    • Search Google Scholar
    • Export Citation
  • 35

    Spruit M, Falk RG, Beckmann L, The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion. Eur Spine J. 2005;14(8):752758.

    • Search Google Scholar
    • Export Citation
  • 36

    Fujibayashi S, Takemoto M, Izeki M, Does the formation of vertebral endplate cysts predict nonunion after lumbar interbody fusion? Spine (Phila Pa 1976). 2012;37(19):E1197E1202.

    • Search Google Scholar
    • Export Citation
  • 37

    Tokuhashi Y, Matsuzaki H, Oda H, Uei H. Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine (Phila Pa 1976). 2008;33(8):903908.

    • Search Google Scholar
    • Export Citation
  • 38

    Wu JC, Huang WC, Tsai HW, Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus. 2011;31(4):E9.

    • Search Google Scholar
    • Export Citation
  • 39

    Chang TL, Sponseller PD, Kebaish KM, Fishman EK. Low profile pelvic fixation: anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation. Spine (Phila Pa 1976). 2009;34(5):436440.

    • Search Google Scholar
    • Export Citation
  • 40

    Tumialán LM, Mummaneni PV. Long-segment spinal fixation using pelvic screws. Neurosurgery. 2008;63(3)(suppl):183–190.

  • 41

    Valentin J. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1332.

    • Search Google Scholar
    • Export Citation
  • 42

    Stauffer RN, Coventry MB. Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. J Bone Joint Surg Am. 1972;54(4):756768.

    • Search Google Scholar
    • Export Citation
  • 43

    Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):20572066.

    • Search Google Scholar
    • Export Citation
  • 44

    McGilvray KC, Easley J, Seim HB, Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 2018;18(7):12501260.

    • Search Google Scholar
    • Export Citation
  • 45

    Walsh WR, Pelletier MH, Wang T, Does implantation site influence bone ingrowth into 3D-printed porous implants? Spine J. 2019;19(11):18851898.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 673 673 211
Full Text Views 65 65 32
PDF Downloads 61 61 35
EPUB Downloads 0 0 0