Antimicrobial prophylaxis in noninstrumented spine surgery: a prospective study to determine efficacy and drawbacks

View More View Less
  • 1 Department of Neurosurgery, La Pitié-Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris;
  • | 2 Department of Neurosurgery, Bretonneau Hospital, Hopitaux de Tours;
  • | 3 Department of Neuro-anesthesiology, La Pitié-Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris; and
  • | 4 Sorbonne University, Paris, France
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

The authors sought to evaluate the roles of perioperative antibiotic prophylaxis in noninstrumented spine surgery (NISS), both in postoperative infections and the impact on the selection of resistant bacteria. To the authors’ knowledge, only one prospective study recommending preoperative intravenous (IV) antibiotics for prophylaxis has been published previously.

METHODS

Two successive prospective IV antibiotic prophylaxis protocols were used: from 2011 to 2013 (group A: no prophylactic antibiotic) and from 2014 to 2016 (group B: prophylactic cefazolin). Patient infection rates, infection risk factors, and bacteriological status were determined.

RESULTS

In total, 2250 patients (1031 in group A and 1219 in group B) were followed for at least 1 year. The authors identified 72 surgical site infections, 51 in group A (4.9%) and 21 in group B (1.7%) (p < 0.0001). A multiple logistic regression hazard model identified male sex (HR 2.028, 95% CI 1.173–3.509; p = 0.011), cervical laminectomy (HR 2.078, 95% CI 1.147–3.762; p = 0.016), and postoperative CSF leak (HR 43.782, 95% CI 10.9–189.9; p < 0.0001) as independent predictive risk factors of infection. In addition, preoperative antibiotic prophylaxis was the only independent favorable factor (HR 0.283, 95% CI 0.164–0.488; p < 0.0001) that significantly reduced infections for NISS. Of 97 bacterial infections, cefazolin-resistant bacteria were identified in 26 (26.8%), with significantly more in group B (40%) than in group A (20.9%) (p = 0.02).

CONCLUSIONS

A single dose of preoperative cefazolin is effective and mandatory in preventing surgical site infections in NISS. Single-dose antibiotic prophylaxis has an immediate impact on cutaneous flora by increasing cefazolin-resistant bacteria.

ABBREVIATIONS

ASA = American Society of Anesthesiologists; IV = intravenous; MRSA = methicillin-resistant Staphylococcus aureus; NISS = noninstrumented spine surgery; NNIS = National Nosocomial Infections Surveillance; SSI = surgical site infection.

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Aymeric Amelot: La Pitié-Salpêtrière Hospital, Assistance Publique–Hôpitaux de Paris, France. aymmed@hotmail.fr.

INCLUDE WHEN CITING Published online July 9, 2021; DOI: 10.3171/2020.11.SPINE201891.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Kirkland KB, Briggs JP, Trivette SL, et al. . The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725730.

    • Search Google Scholar
    • Export Citation
  • 2

    Schuster JM, Rechtine G, Norvell DC, Dettori JR. The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine (Phila Pa 1976). 2010;35(9)(suppl):S125S137.

    • Search Google Scholar
    • Export Citation
  • 3

    Pull ter Gunne AF, Hosman AJF, Cohen DB, et al. . A methodological systematic review on surgical site infections following spinal surgery: part 1: risk factors. Spine (Phila Pa 1976). 2012;37(24):20172033.

    • Search Google Scholar
    • Export Citation
  • 4

    van Middendorp JJ, Pull ter Gunne AF, Schuetz M, et al. . A methodological systematic review on surgical site infections following spinal surgery: part 2: prophylactic treatments. Spine (Phila Pa 1976). 2012;37(24):20342045.

    • Search Google Scholar
    • Export Citation
  • 5

    Shaffer WO, Baisden JL, Fernand R, Matz PG. An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine J. 2013;13(10):13871392.

    • Search Google Scholar
    • Export Citation
  • 6

    Radcliff KE, Neusner AD, Millhouse PW, et al. . What is new in the diagnosis and prevention of spine surgical site infections. Spine J. 2015;15(2):336347.

    • Search Google Scholar
    • Export Citation
  • 7

    Yao R, Tan T, Tee JW, Street J. Prophylaxis of surgical site infection in adult spine surgery: a systematic review. J Clin Neurosci. 2018;52:525.

    • Search Google Scholar
    • Export Citation
  • 8

    Olsen MA, Mayfield J, Lauryssen C, et al. . Risk factors for surgical site infection in spinal surgery. J Neurosurg. 2003;98(2)(suppl):149155.

    • Search Google Scholar
    • Export Citation
  • 9

    Attenello J, Allen RT. Postoperative spine infections. Semin Spine Surg. 2019;31(4):100754.

  • 10

    Anderson DJ, Podgorny K, Berríos-Torres SI, et al. . Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):605627.

    • Search Google Scholar
    • Export Citation
  • 11

    Barker FG II. Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery. 2002;51(2):391401.

  • 12

    Petignat C, Francioli P, Harbarth S, et al. . Cefuroxime prophylaxis is effective in noninstrumented spine surgery: a double-blind, placebo-controlled study. Spine (Phila Pa 1976). 2008;33(18):19191924.

    • Search Google Scholar
    • Export Citation
  • 13

    Dobzyniak MA, Fischgrund JS, Hankins S, Herkowitz HN. Single versus multiple dose antibiotic prophylaxis in lumbar disc surgery. Spine (Phila Pa 1976). 2003;28(21):E453E455.

    • Search Google Scholar
    • Export Citation
  • 14

    Kakimaru H, Kono M, Matsusaki M, et al. . Postoperative antimicrobial prophylaxis following spinal decompression surgery: is it necessary?. J Orthop Sci. 2010;15(3):305309.

    • Search Google Scholar
    • Export Citation
  • 15

    Jones J. Prophylactic antibiotic use in clean neurosurgery: of potential benefit or harm to the patient?. J Wound Care. 2005;14(1):3941.

    • Search Google Scholar
    • Export Citation
  • 16

    Société française d’anesthésie et de réanimation. Antibioprophylaxis in surgery and interventional medicine (adult patients). Actualization 2010.Article in French. Ann Fr Anesth Reanim. 2011;30(2):168190.

    • Search Google Scholar
    • Export Citation
  • 17

    Société française d’anesthésie et de réanimation. Antibioprophylaxis in surgery and interventional medicine (adult patients). Actualization 2018.Article in French. Ann Fr Anesth Reanim. 2018;30(2):133.

    • Search Google Scholar
    • Export Citation
  • 18

    Culver DH, Horan TC, Gaynes RP, et al. . Surgical wound infection rates by wound class, operative procedure, and patient risk index. Am J Med. 1991;91(3B):152S157S.

    • Search Google Scholar
    • Export Citation
  • 19

    Horan TC, Gaynes RP, Martone WJ, et al. . CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13(10):606608.

    • Search Google Scholar
    • Export Citation
  • 20

    Mastronardi L, Rychlicki F, Tatta C, et al. . Spondylodiscitis after lumbar microdiscectomy: effectiveness of two protocols of intraoperative antibiotic prophylaxis in 1167 cases. Neurosurg Rev. 2005;28(4):303307.

    • Search Google Scholar
    • Export Citation
  • 21

    Kanayama M, Hashimoto T, Shigenobu K, et al. . Effective prevention of surgical site infection using a Centers for Disease Control and Prevention guideline-based antimicrobial prophylaxis in lumbar spine surgery. J Neurosurg Spine. 2007;6(4):327329.

    • Search Google Scholar
    • Export Citation
  • 22

    Sweet FA, Roh M, Sliva C. Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976). 2011;36(24):20842088.

    • Search Google Scholar
    • Export Citation
  • 23

    Lopez WY, Rider SM, Nwosu K, et al. . The impact of vancomycin and cefazolin as standard preoperative antibiotic prophylaxis on surgical site infections following instrumented spinal fusion. Spine (Phila Pa 1976). 2019;44(6):E366E371.

    • Search Google Scholar
    • Export Citation
  • 24

    Schimmel JJP, Horsting PP, de Kleuver M, et al. . Risk factors for deep surgical site infections after spinal fusion. Eur Spine J. 2010;19(10):17111719.

    • Search Google Scholar
    • Export Citation
  • 25

    Grabel ZJ, Boden A, Segal DN, et al. . The impact of prophylactic intraoperative vancomycin powder on microbial profile, antibiotic regimen, length of stay, and reoperation rate in elective spine surgery. Spine J. 2019;19(2):261266.

    • Search Google Scholar
    • Export Citation
  • 26

    Dimick JB, Lipsett PA, Kostuik JP. Spine update: antimicrobial prophylaxis in spine surgery: basic principles and recent advances. Spine (Phila Pa 1976). 2000;25(19):25442548.

    • Search Google Scholar
    • Export Citation
  • 27

    Sebastian A, Huddleston P III, Kakar S, et al. . Risk factors for surgical site infection after posterior cervical spine surgery: an analysis of 5,441 patients from the ACS NSQIP 2005-2012. Spine J. 2016;16(4):504509.

    • Search Google Scholar
    • Export Citation
  • 28

    Badiee RK, Mayer R, Pennicooke B, et al. . Complications following posterior cervical decompression and fusion: a review of incidence, risk factors, and prevention strategies. J Spine Surg. 2020;6(1):323333.

    • Search Google Scholar
    • Export Citation
  • 29

    Riffaud L, Neumuth T, Morandi X, et al. . Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery. Neurosurgery. 2010;67(2 Suppl Operative):325332.

    • Search Google Scholar
    • Export Citation
  • 30

    Hellbusch LC, Helzer-Julin M, Doran SE, et al. . Single-dose vs multiple-dose antibiotic prophylaxis in instrumented lumbar fusion—a prospective study. Surg Neurol. 2008;70(6):622627.

    • Search Google Scholar
    • Export Citation
  • 31

    Ohtori S, Inoue G, Koshi T, et al. . Long-term intravenous administration of antibiotics for lumbar spinal surgery prolongs the duration of hospital stay and time to normalize body temperature after surgery. Spine (Phila Pa 1976). 2008;33(26):29352937.

    • Search Google Scholar
    • Export Citation
  • 32

    Abdul-Jabbar A, Berven SH, Hu SS, et al. . Surgical site infections in spine surgery: identification of microbiologic and surgical characteristics in 239 cases. Spine (Phila Pa 1976). 2013;38(22):E1425E1431.

    • Search Google Scholar
    • Export Citation
  • 33

    Park HY, Sheppard W, Smith R, et al. . The combined administration of vancomycin IV, standard prophylactic antibiotics, and vancomycin powder in spinal instrumentation surgery: does the routine use affect infection rates and bacterial resistance?. J Spine Surg. 2018;4(2):173179.

    • Search Google Scholar
    • Export Citation
  • 34

    Devin CJ, Chotai S, McGirt MJ, et al. . Intrawound vancomycin decreases the risk of surgical site infection after posterior spine surgery: a multicenter analysis. Spine (Phila Pa 1976). 2018;43(1):6571.

    • Search Google Scholar
    • Export Citation
  • 35

    Tubaki VR, Rajasekaran S, Shetty AP. Effects of using intravenous antibiotic only versus local intrawound vancomycin antibiotic powder application in addition to intravenous antibiotics on postoperative infection in spine surgery in 907 patients. Spine (Phila Pa 1976). 2013;38(25):21492155.

    • Search Google Scholar
    • Export Citation
  • 36

    Adogwa O, Elsamadicy AA, Sergesketter A, et al. . Prophylactic use of intraoperative vancomycin powder and postoperative infection: an analysis of microbiological patterns in 1200 consecutive surgical cases. J Neurosurg Spine. 2017;27(3):328334.

    • Search Google Scholar
    • Export Citation
  • 37

    Hey HWD, Thiam DW, Koh ZSD, et al. . Is intraoperative local vancomycin powder the answer to surgical site infections in spine surgery?. Spine (Phila Pa 1976). 2017;42(4):267274.

    • Search Google Scholar
    • Export Citation
  • 38

    Gande A, Rosinski A, Cunningham T, et al. . Selection pressures of vancomycin powder use in spine surgery: a meta-analysis. Spine J. 2019;19(6):10761084.

    • Search Google Scholar
    • Export Citation
  • 39

    Korinek AM, Baugnon T, Golmard JL, et al. . Risk factors for adult nosocomial meningitis after craniotomy: role of antibiotic prophylaxis. Neurosurgery. 2006;59(1):126133.

    • Search Google Scholar
    • Export Citation
  • 40

    van Ek B, Dijkmans BA, van Dulken H, et al. . Effect of cloxacillin prophylaxis on the bacterial flora of craniotomy wounds. Scand J Infect Dis. 1990;22(3):345352.

    • Search Google Scholar
    • Export Citation
  • 41

    Kernodle DS, Barg NL, Kaiser AB. Low-level colonization of hospitalized patients with methicillin-resistant coagulase-negative staphylococci and emergence of the organisms during surgical antimicrobial prophylaxis. Antimicrob Agents Chemother. 1988;32(2):202208.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 304 304 304
Full Text Views 55 55 55
PDF Downloads 65 65 65
EPUB Downloads 0 0 0