Letter to the Editor. Importance of calibration assessment in machine learning–based predictive analytics

Restricted access

Spine - 1 year subscription bundle (Individuals Only)

USD  $369.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Article Information

Contributor Notes

Correspondence Victor E. Staartjes: victoregon.staartjes@usz.ch.INCLUDE WHEN CITING Published online February 21, 2020; DOI: 10.3171/2019.12.SPINE191503.Disclosures The authors report no conflict of interest.
Headings
References
  • 1

    Hopkins BSYamaguchi JTGarcia R Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine. 2020;32(3):399406.

    • Search Google Scholar
    • Export Citation
  • 2

    Debray TPAVergouwe YKoffijberg H A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68:279289.

    • Search Google Scholar
    • Export Citation
  • 3

    Guo CPleiss GSun YWeinberger KQ. On calibration of modern neural networks. http://arxiv.org/abs/1706.04599. Accessed January 30 2020.

    • Export Citation
  • 4

    Niculescu-Mizil ACaruana R. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning ICML ’05. New York, NY: ACM; 2005:625632. http://doi.acm.org/10.1145/1102351.1102430. Accessed January 30 2020.

    • Search Google Scholar
    • Export Citation
  • 5

    Janssen KJMMoons KGMKalkman CJ Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008;61:7686.

    • Search Google Scholar
    • Export Citation
  • 1

    Brownlee J. How and when to use a calibrated classification model with scikit-learn. https://machinelearningmastery.com/calibrated-classification-model-in-scikit-learn/. Accessed January 30 2020.

    • Export Citation
  • 2

    Kull MSilva Filho TMFlach P. Beyond sigmoids: how to obtain well-calibrated probabilities from binary classifiers with beta calibration. Electron J Stat. 2017;11(2):50525080.

    • Search Google Scholar
    • Export Citation
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 225 225 52
Full Text Views 27 27 4
PDF Downloads 9 9 2
EPUB Downloads 0 0 0
PubMed
Google Scholar