In vitro biomechanical analysis of three anterior thoracolumbar implants

Patrick W. HitchonDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by Patrick W. Hitchon in
jns
Google Scholar
PubMed
Close
 M.D.
,
Vijay K. GoelDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by Vijay K. Goel in
jns
Google Scholar
PubMed
Close
 Ph.D.
,
Thomas N. RoggeDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by Thomas N. Rogge in
jns
Google Scholar
PubMed
Close
 M.S.
,
James C. TornerDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by James C. Torner in
jns
Google Scholar
PubMed
Close
 Ph.D.
,
Andrew P. DoorisDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by Andrew P. Dooris in
jns
Google Scholar
PubMed
Close
 B.Sc.
,
John S. DrakeDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by John S. Drake in
jns
Google Scholar
PubMed
Close
 B.Sc.
,
S. J. YangDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by S. J. Yang in
jns
Google Scholar
PubMed
Close
 B.Sc.
, and
Koji TotoribeDivision of Neurosurgery and Departments of Biomedical Engineering and Epidemiology, University of Iowa and Veterans Administration Medical Center, Iowa City, Iowa

Search for other papers by Koji Totoribe in
jns
Google Scholar
PubMed
Close
 M.D.
View More View Less
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

Object. The goal of this study was to evaluate the comparative efficacy of three commonly used anterior thoracolumbar implants: the anterior thoracolumbar locking plate (ATLP), the smooth-rod Kaneda (SRK), and the Z-plate.

Methods. In vitro testing was performed using the T9—L3 segments of human cadaver spines. An L-1 corpectomy was performed, and stabilization was achieved using one of three anterior devices: the ATLP in nine spines, the SRK in 10, and the Z-plate in 10. Specimens were load tested with 1.5-, 3-, 4.5-, and 6-Nm in flexion and extension, right and left lateral bending, and right and left axial rotation. Angular motion was monitored using two video cameras that tracked light-emitting diodes attached to the vertebral bodies. Testing was performed in the intact state in spines stabilized with one of the three aforementioned devices after the devices had been fatigued to 5000 cycles at ± 3 Nm and after bilateral facetectomy.

There was no difference in the stability of the intact spines with use of the three devices. There were no differences between the SRK- and Z-plate—instrumented spines in any state. In extension testing, the mean angular rotation (± standard deviation) of spines instrumented with the SRK (4.7 ± 3.2°) and Z-plate devices (3.3 ± 2.3°) was more rigid than that observed in the ATLP-stabilized spines (9 ± 4.8°). In flexion testing after induction of fatigue, however, only the SRK (4.2 ± 3.2°) was stiffer than the ATLP (8.9 ± 4.9°). Also, in extension postfatigue, only the SRK (2.4 ± 3.4°) provided more rigid fixation than the ATLP (6.4 ± 2.9°). All three devices were equally unstable after bilateral facetectomy. The SRK and Z-plate anterior thoracolumbar implants were both more rigid than the ATLP, and of the former two the SRK was stiffer.

Conclusions. The authors' results suggest that in cases in which profile and ease of application are not of paramount importance, the SRK has an advantage over the other two tested implants in achieving rigid fixation immediately postoperatively.

  • Collapse
  • Expand
  • 1.

    An HS, , Lim T, & You J, et al: Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine 20:19791983, 1995 An HS, Lim T, You J, et al: Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine 20:1979–1983, 1995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Benson DR, , Burkus JK, & Montesano PX, et al: Unstable thoracolumbar and lumbar burst fractures treated with the AO fixateur interne. J Spinal Disord 5:335343, 1992 Benson DR, Burkus JK, Montesano PX, et al: Unstable thoracolumbar and lumbar burst fractures treated with the AO fixateur interne. J Spinal Disord 5:335–343, 1992

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Carl AL, , Tromanhauser SG, & Roger DJ: Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. Spine 17:S317S323, 1992 Carl AL, Tromanhauser SG, Roger DJ: Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. Spine 17:S317–S323, 1992

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Cohen M, & McAfee P: Kaneda Anterior Spinal Instrumentation, in Hitchon PW, , Traynelis VC, & Rengachary S (eds): Techniques in Spinal Fusion and Stabilization. New York: Thieme, 1995, pp 264278 Cohen M, McAfee P: Kaneda Anterior Spinal Instrumentation, in Hitchon PW, Traynelis VC, Rengachary S (eds): Techniques in Spinal Fusion and Stabilization. New York: Thieme, 1995, pp 264–278

    • Search Google Scholar
    • Export Citation
  • 5.

    Dick JC, , Brodke DS, & Zdeblick TA, et al: Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine 22:744750, 1997 Dick JC, Brodke DS, Zdeblick TA, et al: Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine 22:744–750, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dickman CA, , Yahiro MA, & Lu HTC, et al: Surgical treatment alternatives for fixation of unstable fractures of the thoracic and lumbar spine. A meta-analysis. Spine 19:2266S2273S, 1994 Dickman CA, Yahiro MA, Lu HTC, et al: Surgical treatment alternatives for fixation of unstable fractures of the thoracic and lumbar spine. A meta-analysis. Spine 19:2266S–2273S, 1994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dunn HK: Anterior stabilization of thoracolumbar injuries. Clin Orthop 189:116124, 1984 Dunn HK: Anterior stabilization of thoracolumbar injuries. Clin Orthop 189:116–124, 1984

    • Search Google Scholar
    • Export Citation
  • 8.

    Ebelke DK, , Asher MA, & Neff JR, et al: Survivorship analysis of VSP spine instrumentation in the treatment of thoracolumbar and lumbar burst fractures. Spine 16:S428S432, 1991 Ebelke DK, Asher MA, Neff JR, et al: Survivorship analysis of VSP spine instrumentation in the treatment of thoracolumbar and lumbar burst fractures. Spine 16:S428–S432, 1991

    • Search Google Scholar
    • Export Citation
  • 9.

    Gaines RW Jr, , Carson WL, & Satterlee CC, et al: Experimental evaluation of seven different spinal fracture internal fixation devices using nonfailure stability testing. The load-sharing and unstable-mechanism concepts. Spine 16:902909, 1991 Gaines RW Jr, Carson WL, Satterlee CC, et al: Experimental evaluation of seven different spinal fracture internal fixation devices using nonfailure stability testing. The load-sharing and unstable-mechanism concepts. Spine 16:902–909, 1991

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Garfin S: Spinal fusion: the use of bone screws in the vertebral pedicles. Summation. Spine 19:2300S2305S, 1994 Garfin S: Spinal fusion: the use of bone screws in the vertebral pedicles. Summation. Spine 19:2300S–2305S, 1994

    • Search Google Scholar
    • Export Citation
  • 11.

    Ghanayem AJ, & Zdeblick TA: Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop 335:89100, 1997 Ghanayem AJ, Zdeblick TA: Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop 335:89–100, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Goel VK, , Goyal S, & Clark C, et al: Kinematics of the whole lumbar spine. Effect of discectomy. Spine 10:543554, 1985 Goel VK, Goyal S, Clark C, et al: Kinematics of the whole lumbar spine. Effect of discectomy. Spine 10:543–554, 1985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Goel VK, , Nye T, & Clark C, et al: A technique to evaluate an internal spinal device by use of the Selspot System: an application to Luque closed loop. Spine 12:150159, 1987 Goel VK, Nye T, Clark C, et al: A technique to evaluate an internal spinal device by use of the Selspot System: an application to Luque closed loop. Spine 12:150–159, 1987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Goel VK, & Weinstein JN: Biomechanics of the Spine: Clinical and Surgical Perspectives. Boca Raton: CRC Press, 1990, pp 111118 Goel VK, Weinstein JN: Biomechanics of the Spine: Clinical and Surgical Perspectives. Boca Raton: CRC Press, 1990, pp 111–118

    • Search Google Scholar
    • Export Citation
  • 15.

    Hitchon PW, , Goel VK, & Rogge T, et al: Biomechanical studies of a dynamized anterior thoracolumbar implant. Spine 25:306309, 2000 Hitchon PW, Goel VK, Rogge T, et al: Biomechanical studies of a dynamized anterior thoracolumbar implant. Spine 25:306–309, 2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hitchon PW, , Goel VK, & Rogge T, et al: Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine 24:213218,1999 Hitchon PW, Goel VK, Rogge T, et al: Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Spine 24:213–218,1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Johnston CE II, , Ashman RB, & Baird AM, et al: Effect of spinal construct stiffness on early fusion mass incorporation. Experimental study. Spine 15:908912, 1990 Johnston CE II, Ashman RB, Baird AM, et al: Effect of spinal construct stiffness on early fusion mass incorporation. Experimental study. Spine 15:908–912, 1990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kaneda K, , Abumi K, & Fujiya M: Burst fractures with neurologic deficits of the thoracolumbar-lumbar spine. Results of anterior decompression and stabilization with anterior instrumentation. Spine 9:788795, 1984 Kaneda K, Abumi K, Fujiya M: Burst fractures with neurologic deficits of the thoracolumbar-lumbar spine. Results of anterior decompression and stabilization with anterior instrumentation. Spine 9:788–795, 1984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kaneda K, , Taneichi H, & Abumi K, et al: Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg (Am) 79:6983, 1997 Kaneda K, Taneichi H, Abumi K, et al: Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg (Am) 79:69–83, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kostuik JP: Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13:286293, 1988 Kostuik JP: Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13:286–293, 1988

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kotani Y, , Cunningham BW, & Parker BW, et al: Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems. A synthetic testing model. Spine 24:14061413, 1999 Kotani Y, Cunningham BW, Parker BW, et al: Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems. A synthetic testing model. Spine 24:1406–1413, 1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lim TH: Design of a spinal fixation device and its evaluation: analytical and experimental approach. Dissertation. Iowa City: University of Iowa, 1994 Lim TH: Design of a spinal fixation device and its evaluation: analytical and experimental approach. Dissertation. Iowa City: University of Iowa, 1994

    • Search Google Scholar
    • Export Citation
  • 23.

    Lim TH, , An HS, & Hong JH, et al: Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22:261266, 1997 Lim TH, An HS, Hong JH, et al: Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22:261–266, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    McAfee PC: Complications of anterior approaches to the thoracolumbar spine. Emphasis on Kaneda instrumentation. Clin Orthop 306:110119, 1994 McAfee PC: Complications of anterior approaches to the thoracolumbar spine. Emphasis on Kaneda instrumentation. Clin Orthop 306:110–119, 1994

    • Search Google Scholar
    • Export Citation
  • 25.

    McAfee PC, , Bohlman HH, & Yuan HA: Anterior decompression of traumatic thoracolumbar fractures with incomplete neurological deficit using a retroperitoneal approach. J Bone Joint Surg (Am) 67:89104, 1985 McAfee PC, Bohlman HH, Yuan HA: Anterior decompression of traumatic thoracolumbar fractures with incomplete neurological deficit using a retroperitoneal approach. J Bone Joint Surg (Am) 67:89–104, 1985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    McLain RF, , Sparling E, & Benson DR, et al: Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg (Am) 75:162167, 1993 McLain RF, Sparling E, Benson DR, et al: Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg (Am) 75:162–167, 1993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Steffee AD, & Brantigan JW: The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in Food and Drug Administration clinical trials. Spine 18:11601172, 1993 Steffee AD, Brantigan JW: The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in Food and Drug Administration clinical trials. Spine 18:1160–1172, 1993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Thalgott JS: Indications and techniques for the AO titanium anterior thoracolumbar locking plate, in Thalgott JS, & Aebi M (eds): Manual of Internal Fixation of the Spine: Principles of Techniques in Spine Surgery. Philadelphia: Lippincott-Raven, 1996, pp 6576 Thalgott JS: Indications and techniques for the AO titanium anterior thoracolumbar locking plate, in Thalgott JS, Aebi M (eds): Manual of Internal Fixation of the Spine: Principles of Techniques in Spine Surgery. Philadelphia: Lippincott-Raven, 1996, pp 65–76

    • Search Google Scholar
    • Export Citation
  • 29.

    Thalgott JS, , Kabins MB, & Timlin M, et al: Four year experience with the AO thoracolumbar locking plate. Spinal Cord 35:286291, 1997 Thalgott JS, Kabins MB, Timlin M, et al: Four year experience with the AO thoracolumbar locking plate. Spinal Cord 35:286–291, 1997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Transfeldt EE, , White D, & Bradford DS, et al: Delayed anterior decompression in patients with spinal cord and cauda equina injuries of the thoracolumbar spine. Spine 15:953957, 1990 Transfeldt EE, White D, Bradford DS, et al: Delayed anterior decompression in patients with spinal cord and cauda equina injuries of the thoracolumbar spine. Spine 15:953–957, 1990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Yuan HA, , Garfin SR, & Dickman CA, et al: A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusions. Spine 19:S2279S2296, 1994 Yuan HA, Garfin SR, Dickman CA, et al: A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusions. Spine 19:S2279–S2296, 1994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Zdeblick TA: A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983991, 1993 Zdeblick TA: A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983–991, 1993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Zdeblick TA: Z-plate Anterior Thoracolumbar Instrumentation, in Hitchon PW, , Traynelis VC, & Rengachary S (eds): Techniques in Spinal Fusion and Stabilization. New York: Thieme, 1995, pp 279289 Zdeblick TA: Z-plate Anterior Thoracolumbar Instrumentation, in Hitchon PW, Traynelis VC, Rengachary S (eds): Techniques in Spinal Fusion and Stabilization. New York: Thieme, 1995, pp 279–289

    • Search Google Scholar
    • Export Citation
  • 34.

    Zdeblick TA, , Warden KE, & Zou D, et al: Anterior spinal fixators. A biomechanical in vitro study. Spine 18:513517, 1993. Zdeblick TA, Warden KE, Zou D, et al: Anterior spinal fixators. A biomechanical in vitro study. Spine 18:513–517, 1993.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 457 68 3
Full Text Views 76 0 0
PDF Downloads 51 2 0
EPUB Downloads 0 0 0