Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments

Nobuaki Tsukamoto Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Nobuaki Tsukamoto in
jns
Google Scholar
PubMed
Close
 M.D.
,
Takeshi Maeda Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Takeshi Maeda in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Hiromasa Miura Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Hiromasa Miura in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Seiya Jingushi Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Seiya Jingushi in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Akira Hosokawa Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Akira Hosokawa in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Katsumi Harimaya Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Katsumi Harimaya in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
,
Hidehiko Higaki Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Hidehiko Higaki in
jns
Google Scholar
PubMed
Close
 D.Eng., Ph.D.
,
Kousaku Kurata Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Kousaku Kurata in
jns
Google Scholar
PubMed
Close
 D.Eng., Ph.D.
, and
Yukihide Iwamoto Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University; and Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan

Search for other papers by Yukihide Iwamoto in
jns
Google Scholar
PubMed
Close
 M.D., Ph.D.
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

Object

Mechanical stress has been considered one of the important factors in ossification of the spinal ligaments. According to previous clinical and in vitro studies, the accumulation of tensile stress to these ligaments may be responsible for ligament ossification. To elucidate the relationship between such mechanical stress and the development of ossification of the spinal ligaments, the authors established an animal experimental model in which the in vivo response of the spinal ligaments to direct repetitive tensile loading could be observed.

Methods

The caudal vertebrae of adult Wistar rats were studied. After creating a novel stimulating apparatus, cyclic tensile force was loaded to rat caudal spinal ligaments at 10 N in 600 to 1800 cycles per day for up to 2 weeks. The morphological responses were then evaluated histologically and immunohistochemically.

After the loadings, ectopic cartilaginous formations surrounded by proliferating round cells were observed near the insertion of the spinal ligaments. Several areas of the cartilaginous tissue were accompanied by woven bone. Bone morphogenetic protein–2 expression was clearly observed in the cytoplasm of the proliferating round cells. The histological features of the rat spinal ligaments induced by the tensile loadings resembled those of spinal ligament ossification observed in humans.

Conclusions

The findings obtained in the present study strongly suggest that repetitive tensile stress to the spinal ligaments is one of the important causes of ligament ossification in the spine.

Abbreviations used in this paper:

ALL = anterior longitudinal ligament; BMP = bone morphogenetic protein; OSL = ossification of the spinal ligament; PLL = posterior longitudinal ligament.
  • Collapse
  • Expand
  • 1

    Akune T, , Ogata N, , Seichi A, , Ohnishi I, , Nakamura K, & Kawaguchi H: Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J Bone Joint Surg Am 83:15371544, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Benjamin M, , Kumai T, , Milz S, , Boszczyk BM, , Boszczyk AA, & Ralphs JR: The skeletal attachment of tendons—tendon ‘entheses’. Comp Biochem Physiol A Mol Integr Physiol 133:931945, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Bi W, , Deng JM, , Zhang Z, , Behringer RR, & de Crombrugghe B: Sox9 is required for cartilage formation. Nat Genet 22:8589, 1999

  • 4

    Bostrom MP, , Lane JM, , Berberian WS, , Missri AA, , Tomin E, & Weiland A, et al.: Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13:357367, 1995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Cooper RR, & Misol S: Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52:120, 1970

  • 6

    Fukuyama S, , Nakamura T, , Ikeda T, & Takagi K: The effect of mechanical stress on hypertrophy of the lumbar ligamentum flavum. J Spinal Disord 8:126130, 1995

  • 7

    Gao J, , Messner K, , Ralphs JR, & Benjamin M: An immunohisto-chemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat Embryol (Berl) 194:399406, 1996

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Goto K, , Yamazaki M, , Tagawa M, , Goto S, , Kon T, & Moriya H, et al.: Involvement of insulin-like growth factor I in development of ossification of the posterior longitudinal ligament of the spine. Calcif Tissue Int 62:158165, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Hashizume Y: Pathological studies on the ossification of the posterior longitudinal ligaments. Acta Pathol Jpn 30:255273, 1980

  • 10

    Hayashi K, , Ishidou Y, , Yonemori K, , Nagamine T, , Origuchi S, & Maeda S, et al.: Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone 21:2330, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Healy C, , Uwanogho D, & Sharpe PT: Regulation and role of Sox9 in cartilage formation. Dev Dyn 215:6978, 1999

  • 12

    Hirabayashi K, , Miyakawa J, , Satomi K, , Maruyama T, & Wakano K: Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354364, 1981

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Hogan BL: Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:15801594, 1996

  • 14

    Hoshi K, , Amizuka N, , Sakou T, , Kurokawa T, & Ozawa H: Fibro-blasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: morphological examinations for ossification of spinal ligaments. Bone 21:155162, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Ikegawa S, , Kurokawa T, , Hizuka N, , Hoshino Y, , Ohnishi I, & Shizume K: Increase of serum growth hormone-binding protein in patients with ossification of the posterior longitudinal ligament of the spine. Spine 18:17571760, 1993

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Iwasaki K, , Furukawa KI, , Tanno M, , Kusumi T, , Ueyama K, & Tanaka H, et al.: Uniaxial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 74:448457, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Kawaguchi H, , Kurokawa T, , Hoshino Y, , Kawahara H, , Ogata E, & Matsumoto T: Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-β in the ossification of posterior longitudinal ligament of the cervical spine. Spine 17:S33S36, 1992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Kawaguchi Y, , Kanamori M, , Ishihara H, , Nakamura H, , Sugimori K, & Tsuji H, et al.: Progression of ossification of the posterior longitudinal ligament following en bloc cervical laminoplasty. J Bone Joint Surg Am 83:17981802, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Kitajima I, , Tachibana S, , Mikami Y, , Hirota Y, & Nakamichi K: Development of ossification of posterior longitudinal ligament of the cervical spine after atlantoaxial fusion. J Orthop Sci 6:591594, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Koga H, , Sakou T, , Taketomi E, , Hayashi K, , Numasawa T, & Harata S, et al.: Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 62:14601467, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Kon T, , Yamazaki M, , Tagawa M, , Goto S, , Terakado A, & Moriya H, et al.: Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 60:291296, 1997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Kondo S, , Onari K, , Watanabe K, , Hasegawa T, , Toguchi A, & Mihara H: Hypertrophy of the posterior longitudinal ligament is a prodromal condition to ossification: a cervical myelopathy case report. Spine 26:110114, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Leonardi R, , Villari L, , Bernasconi G, , Piacentini C, , Baciliero U, & Travali S: Cellular S-100 protein immunostaining in human dysfunctional temporomandibular joint discs. Arch Oral Biol 45:411418, 2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Maeda S, , Koga H, , Matsunaga S, , Numasawa T, , Ikari K, & Furushima K, et al.: Gender-specific haplotype association of collagen alpha2 (XI) gene in ossification of the posterior longitudinal ligament of the spine. J Hum Genet 46:14, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Matsunaga S, , Sakou T, , Taketomi E, & Komiya S: Clinical course of patients with ossification of the posterior longitudinal ligament: a minimum 10-year cohort study. J Neurosurg 100:3 Suppl 245248, 2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Matsunaga S, , Sakou T, , Taketomi E, & Nakanisi K: Effects of strain distribution in the intervertebral discs on the progression of ossification of the posterior longitudinal ligaments. Spine 21:184189, 1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    McNeilly CM, , Banes AJ, , Benjamin M, & Ralphs JR: Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189:593600, 1996. (Erratum in J Anat 190:477–478, 1997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Mine T, & Kawai S: Ultrastructural observations on the ossification of the supraspinous ligament. Spine 20:297302, 1995

  • 29

    Miyamoto S, , Takaoka K, , Yonenobu K, & Ono K: Ossification of the ligamentum flavum induced by bone morphogenetic protein. An experimental study in mice. J Bone Joint Surg Br 74:279283, 1992

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Motegi H, , Yamazaki M, , Goto S, , Mikata A, & Moriya H: Proliferating cell nuclear antigen in hypertrophied spinal ligaments. Immunohistochemical localization of proliferating cell nuclear antigen in hypertrophied posterior longitudinal ligament of the cervical spine. Spine 23:305310, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Nakamura I, , Ikegawa S, , Okawa A, , Okuda S, , Koshizuka Y, & Kawaguchi H, et al.: Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum Genet 104:492497, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Nakamura S, , Nakamura T, & Kawahara H: S-100 protein in human articular cartilage. Acta Orthop Scand 59:438440, 1988

  • 33

    Nakamura T, , Hashimoto N, , Maeda Y, , Ikeda T, , Nakagawa H, & Takagi K: Degeneration and ossification of the yellow ligament in unstable spine. J Spinal Disord 3:288292, 1990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Nakatani T, , Marui T, , Hitora T, , Doita M, , Nishida K, & Kurosaka M: Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming factor-β1. J Orthop Res 20:13801386, 2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Ohishi H, , Furukawa K, , Iwasaki K, , Ueyama K, , Okada A, & Motomura S, et al.: Role of prostaglandin I2 in the gene expression induced by mechanical stress in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. J Pharmacol Exp Ther 305:818824, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Okada K, , Oka S, , Tohge K, , Ono K, , Yonenobu K, & Hosoya T: Thoracic myelopathy caused by ossification of the ligamentum flavum. Clinicopathologic study and surgical treatment. Spine 16:280287, 1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Onishi T, , Ishidou Y, , Nagamine T, , Yone K, , Imamura T, & Kato M, et al.: Distinct overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a BMP type II receptor during fracture healing in rats. Bone 22:605612, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Ono K, , Yonenobu K, , Miyamoto S, & Okada K: Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop Relat Res 359:1826, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Ralphs JR, , Benjamin M, , Waggett AD, , Russell DC, , Messner K, & Gao J: Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat 193:215222, 1998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Rufai A, , Ralphs JR, & Benjamin M: Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 13:585593, 1995

  • 41

    Rufai A, , Ralphs JR, & Benjamin M: Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat 189:185191, 1996

  • 42

    Sakano S, , Zhu Y, & Sandell LJ: Cartilage-derived retinoic acid-sensitive protein and type II collagen expression during fracture healing are potential targets for Sox9 regulation. J Bone Miner Res 14:18911901, 1999. (Erratum in J Bone Miner Res 15: 609, 2000)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Sakou T, , Taketomi E, , Matsunaga S, , Yamaguchi M, , Sonoda S, & Yashiki S: Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype. Spine 16:12491252, 1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Shingyouchi Y, , Nagahama A, & Niida M: Ligamentous ossification of the cervical spine in the late middle-aged Japanese men. Its relation to body mass index and glucose metabolism. Spine 21:24742478, 1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Tanaka H, , Nagai E, , Murata T, , Tsubone T, , Shirakura Y, & Sugiyama T, et al.: Involvement of bone morphogenic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatology (Oxford) 40:11631168, 2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Tanno M, , Furukawa KI, , Ueyama K, , Harata S, & Motomura S: Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33:475484, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Terayama K: Genetic studies on ossification of the posterior longitudinal ligaments of the spine. Spine 14:11841191, 1989

  • 48

    Tsuyama N: Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res 184:7184, 1984

  • 49

    Weiss AC, & Dorfman HD: S-100 protein in human cartilage lesions. J Bone Joint Surg Am 68:521526, 1986

  • 50

    Wong M, , Siegrist M, & Goodwin K: Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone 33:685693, 2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Wozney JM, , Rosen V, , Celeste AJ, , Mitsock LM, , Whitters MJ, & Kriz RW, et al.: Novel regulators of bone formation: molecular clones and activities. Science 16:15281534, 1988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Wright E, , Hargrave MR, , Christiansen J, , Cooper L, , Kun J, & Evans T, et al.: The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9:1520, 1995

  • 53

    Yamauchi T, , Taketomi E, , Matsunaga S, & Sakou T: Bone mineral density in patients with ossification of the posterior longitudinal ligament in the cervical spine. J Bone Miner Metab 17:296300, 1999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Yang G, , Crawford RC, & Wang JH: Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37:15431550, 2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Yonemori K, , Imamura T, , Ishidou Y, , Okano T, , Matsunaga S, & Yoshida H, et al.: Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am J Pathol 150:13351347, 1997

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1082 158 4
Full Text Views 196 13 2
PDF Downloads 160 16 1
EPUB Downloads 0 0 0