Effects of rod diameter on kinematics of posterior cervical spine instrumented constructs: an ex vivo study

Ali KiapourDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by Ali Kiapour in
jns
Google Scholar
PubMed
Close
 PhD, MMSc
,
Ashutosh KhandhaDepartment of Biomedical Engineering, University of Delaware, Newark, Delaware; and

Search for other papers by Ashutosh Khandha in
jns
Google Scholar
PubMed
Close
 PhD
,
Elie MassaadDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by Elie Massaad in
jns
Google Scholar
PubMed
Close
 MD, MMSc
,
Ian D. ConnollyDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by Ian D. Connolly in
jns
Google Scholar
PubMed
Close
 MD, MS
,
Muhamed HadzipasicDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by Muhamed Hadzipasic in
jns
Google Scholar
PubMed
Close
 MD, PhD
,
Ganesh M. ShankarDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by Ganesh M. Shankar in
jns
Google Scholar
PubMed
Close
 MD, PhD
,
Vijay GoelEngineering Center for Orthopaedic Research Excellence (E-CORE), Department of Bioengineering Engineering, The University of Toledo, Ohio

Search for other papers by Vijay Goel in
jns
Google Scholar
PubMed
Close
 PhD
, and
John H. ShinDepartment of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

Search for other papers by John H. Shin in
jns
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

Spine - 1 year subscription bundle (Individuals Only)

USD  $384.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $384.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Posterior cervical spine fixation is a robust strategy for stabilizing the spine for a wide range of spinal disorders. With the evolution of spinal implant technology, posterior fixation with lateral mass screws in the subaxial spine is now common. Despite interest in variable rod diameters to meet a wide range of clinical needs such as trauma, revision, and deformity surgery, indications for use of posterior cervical spine fixation are not clear. This laboratory investigation evaluates the mechanical stability and kinematic properties of lateral mass fixation with various commercially available rod diameters.

METHODS

The authors conducted an ex vivo experiment using 13 fresh-frozen human cervical spine specimens, instrumented from C3 to C6 with lateral mass screws, to evaluate the effects of titanium rod diameter on kinematic stability. Each intact spine was tested using a kinematic profiling machine with an optoelectrical camera and infrared sensors applying 1.5-Nm bending moments to the cranial vertebra (C2) simulating flexion-extension, lateral bending, and axial rotation anatomical motions. A compressive follower preload of 150 N was applied in flexion-extension prior to application of a bending moment. Instrumented spines were then tested with rod diameters of 3.5, 4.0, and 4.5 mm. The kinematic data between intact and surgical cases were studied using a nonparametric Wilcoxon signed-rank test. A multivariable, multilevel linear regression model was built to identify the relationship between segmental motion and rod diameter.

RESULTS

Instrumentation resulted in significant reduction in range of motion in all three rod constructs versus intact specimens in flexion-extension, lateral bending, and axial rotation (p < 0.05). The maximum reductions in segmental ROM versus intact spines in 3.5-, 4.0-, and 4.5-mm rod constructs were 61%, 71%, and 81% in flexion-extension; 70%, 76%, and 81% in lateral bending; and 50%, 60%, and 75% in axial rotation, respectively. Segmental motion at the adjacent segments (C2–3 and C6–7) increased significantly (p < 0.05) with increasing rod diameter. The 4.5-mm rod construct had the greatest increase in motion compared to the intact spine.

CONCLUSIONS

With increasing rod diameters from 3.5 to 4.0 mm, flexion-extension, lateral bending, and axial rotation across C3–6 were significantly reduced (p < 0.05). Similar trends were observed with a statistically significant reduction in motion in all anatomical planes when the rod diameter was increased to 4.5 mm. Although the increase in rod diameter resulted in a more rigid construct, it also created an increase (p < 0.05) in the kinematics of the adjacent segments (C2–3 and C6–7). Whether this increase translates into adverse long-term clinical effects in vivo requires further investigation and clinical assessment.

ABBREVIATIONS

BMD = bone mineral density; ROM = range of motion; VIF = variance inflation factor.
  • Collapse
  • Expand

Images from Gami et al. (pp 713–721).

  • 1

    Barrey C, Mertens P, Rumelhart C, Cotton F, Jund J, Perrin G. Biomechanical evaluation of cervical lateral mass fixation: a comparison of the Roy-Camille and Magerl screw techniques. J Neurosurg. 2004;100(3 Suppl Spine):268276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Lindsey RW, Miclau T. Posterior lateral mass plate fixation of the cervical spine. J South Orthop Assoc. 2000;9(1):3642.

  • 3

    Muffoletto AJ, Hadjipavlou AG, Jensen RE, Nauta HJ, Necessary JT, Norcross-Nechay K. Techniques and pitfalls of cervical lateral mass plate fixation. Am J Orthop. 2000;29(11):897903.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Ulrich C, Arand M, Nothwang J. Internal fixation on the lower cervical spine—biomechanics and clinical practice of procedures and implants. Eur Spine J. 2001;10(2):88100.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Wellman BJ, Follett KA, Traynelis VC. Complications of posterior articular mass plate fixation of the subaxial cervical spine in 43 consecutive patients. Spine (Phila Pa 1976).1998;23(2):193200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Coe JD, Warden KE, Sutterlin CE III, McAfee PC. Biomechanical evaluation of cervical spinal stabilization methods in a human cadaveric model. Spine (Phila Pa 1976).1989;14(10):11221131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Cooper PR. The Axis Fixation System for posterior instrumentation of the cervical spine. Neurosurgery. 1996;39(3):612614.

  • 8

    Grubb MR, Currier BL, Stone J, Warden KE, An KN. Biomechanical evaluation of posterior cervical stabilization after a wide laminectomy. Spine (Phila Pa 1976).1997;22(17):19481954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Mihara H, Cheng BC, David SM, Ohnari K, Zdeblick TA. Biomechanical comparison of posterior cervical fixation. Spine (Phila Pa 1976). 2001;26(15):1662-1667.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Smith ME, Cibischino M, Langrana NA, Lee CK, Parsons JR. A biomechanical study of a cervical spine stabilization device: Roy-Camille plates. Spine (Phila Pa 1976).1997;22(1):3843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Swank ML, Sutterlin CE III, Bossons CR, Dials BE. Rigid internal fixation with lateral mass plates in multilevel anterior and posterior reconstruction of the cervical spine. Spine (Phila Pa 1976).1997;22(3):274282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Ulrich C, Woersdoerfer O, Kalff R, Claes L, Wilke HJ. Biomechanics of fixation systems to the cervical spine. Spine (Phila Pa 1976).1991;16(3)(suppl):S4S9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Roy-Camille R, Saillant G, Mazel C. Internal fixation of the unstable cervical spine by a posterior osteosynthesis with plates and screws. In:Sherk HK, ed.The Cervical Spine.Lippincott;1989:390403.

    • Search Google Scholar
    • Export Citation
  • 14

    Choueka J, Spivak JM, Kummer FJ, Steger T. Flexion failure of posterior cervical lateral mass screws. Influence of insertion technique and position. Spine (Phila Pa 1976).1996;21(4):462468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Errico T, Uhl R, Cooper P, Casar R, McHenry T. Pullout strength comparison of two methods of orienting screw insertion in the lateral masses of the bovine cervical spine. J Spinal Disord. 1992;5(4):459463.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Montesano PX, Juach EC, Anderson PA, Benson DR, Hanson PB. Biomechanics of cervical spine internal fixation. Spine (Phila Pa 1976).1991;16(3)(suppl):S10S16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Heller JG, Carlson GD, Abitbol JJ, Garfin SR. Anatomic comparison of the Roy-Camille and Magerl techniques for screw placement in the lower cervical spine. Spine (Phila Pa 1976). 1991;16(10)(suppl):S552-S557.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Jónsson H Jr, Rauschning W. Anatomical and morphometric studies in posterior cervical spinal screw-plate systems. J Spinal Disord. 1994;7(5):429438.

  • 19

    McCullen GM, Garfin SR. Spine update: cervical spine internal fixation using screw and screw-plate constructs. Spine (Phila Pa 1976).2000;25(5):643652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Goel VK, Goyal S, Clark C, Nishiyama K, Nye T. Kinematics of the whole lumbar spine. Effect of discectomy. Spine (Phila Pa 1976).1985;10(6):543554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Goel VK, Grauer JN, Patel TC, et al. Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine (Phila Pa 1976). 2005;30(24):27552764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Patwardhan AG, Havey RM, Ghanayem AJ, et al. Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine (Phila Pa 1976).2000;25(12):15481554.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Patwardhan AG, Tzermiadianos MN, Tsitsopoulos PP, et al. Primary and coupled motions after cervical total disc replacement using a compressible six-degree-of-freedom prosthesis. Eur Spine J. 2012;21(suppl 5):S618S629.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Snyder JT, Tzermiadianos MN, Ghanayem AJ, et al. Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement. Spine (Phila Pa 1976). 2007;32(26):29652969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Graham AW, Swank ML, Kinard RE, Lowery GL, Dials BE. Posterior cervical arthrodesis and stabilization with a lateral mass plate. Clinical and computed tomographic evaluation of lateral mass screw placement and associated complications. Spine (Phila Pa 1976).1996;21(3):323329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Kothe R, Rüther W, Schneider E, Linke B. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine (Phila Pa 1976).2004;29(17):18691875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M. Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instumentations. Spine (Phila Pa 1976). 2003;28(16):18211828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Abumi K. Cervical spondylotic myelopathy: posterior decompression and pedicle screw fixation. Eur Spine J. 2015;24(suppl 2):186196.

  • 29

    Borne GM, Bedou GL, Pinaudeau M. Treatment of pedicular fractures of the axis. A clinical study and screw fixation technique. J Neurosurg. 1984;60(1):8893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    An HS, Gordin R, Renner K. Anatomic considerations for plate-screw fixation of the cervical spine. Spine (Phila Pa 1976).1991;16(10)(suppl):S548S551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Jeanneret B, Magerl F, Ward EH, Ward JC. Posterior stabilization of the cervical spine with hook plates. Spine (Phila Pa 1976).1991;16(3)(suppl):S56S63.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Kim SH, Seo WD, Kim KH, Yeo HT, Choi GH, Kim DH. Clinical outcome of modified cervical lateral mass screw fixation technique. J Korean Neurosurg Soc. 2012;52(2):114119.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Rathinavelu S, Islam A, Shivhare P, Chatterjee S. Lateral mass screw fixation in the cervical spine: introducing a new technique. Asian Spine J. 2021;15(6):849855.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1631 1631 219
Full Text Views 186 186 77
PDF Downloads 150 150 41
EPUB Downloads 0 0 0